Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Connect ; 14(1): 70-79, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164105

RESUMO

Introduction: Neuroimaging studies suggest that the human brain consists of intrinsically organized, large-scale neural networks. Among these networks, the interplay among the default-mode network (DMN), salience network (SN), and central-executive network (CEN) has been widely used to understand the functional interaction patterns in health and disease. This triple network model suggests that the SN causally controls over the DMN and CEN in healthy individuals. This interaction is often referred to as SN's dynamic regulating mechanism. However, such interactions are not well understood in individuals with schizophrenia. Methods: In this study, we leveraged resting-state functional magnetic resonance imaging data from schizophrenia (n = 67) and healthy controls (n = 81) and evaluated the directional functional interactions among DMN, SN, and CEN using stochastic dynamical causal modeling methodology. Results: In healthy controls, our analyses replicated previous findings that SN regulates DMN and CEN activities (Mann-Whitney U test; p < 10-8). In schizophrenia, however, our analyses revealed a disrupted SN-based controlling mechanism over the DMN and CEN (Mann-Whitney U test; p < 10-16). Conclusions: These results indicate that the disrupted controlling mechanism of SN over the other two neural networks may be a candidate neuroimaging phenotype in schizophrenia.


Assuntos
Encéfalo , Esquizofrenia , Humanos , Encéfalo/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Mapeamento Encefálico/métodos , Rede Nervosa/fisiologia
2.
Brain Inform ; 10(1): 33, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38043122

RESUMO

Mild cognitive impairment (MCI) is a transitional stage between normal aging and early Alzheimer's disease (AD). The presence of extracellular amyloid-beta (Aß) in Braak regions suggests a connection with cognitive dysfunction in MCI/AD. Investigating the multivariate predictive relationships between regional Aß biomarkers and cognitive function can aid in the early detection and prevention of AD. We introduced machine learning approaches to estimate cognitive dysfunction from regional Aß biomarkers and identify the Aß-related dominant brain regions involved with cognitive impairment. We employed Aß biomarkers and cognitive measurements from the same individuals to train support vector regression (SVR) and artificial neural network (ANN) models and predict cognitive performance solely based on Aß biomarkers on the test set. To identify Aß-related dominant brain regions involved in cognitive prediction, we built the local interpretable model-agnostic explanations (LIME) model. We found elevated Aß in MCI compared to controls and a stronger correlation between Aß and cognition, particularly in Braak stages III-IV and V-VII (p < 0.05) biomarkers. Both SVR and ANN, especially ANN, showed strong predictive relationships between regional Aß biomarkers and cognitive impairment (p < 0.05). LIME integrated with ANN showed that the parahippocampal gyrus, inferior temporal gyrus, and hippocampus were the most decisive Braak regions for predicting cognitive decline. Consistent with previous findings, this new approach suggests relationships between Aß biomarkers and cognitive impairment. The proposed analytical framework can estimate cognitive impairment from Braak staging Aß biomarkers and delineate the dominant brain regions collectively involved in AD pathophysiology.

3.
J Neuroimaging ; 32(4): 728-734, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35165968

RESUMO

BACKGROUND AND PURPOSE: Recent studies indicate disrupted functional mechanisms of salience network (SN) regions-right anterior insula, left anterior insula, and anterior cingulate cortex-in mild cognitive impairment (MCI). However, the underlying anatomical and molecular mechanisms in these regions are not clearly understood yet. It is also unknown whether integration of multimodal-anatomical and molecular-markers could predict cognitive impairment better in MCI. METHODS: Herein we quantified anatomical volumetric markers via structural MRI and molecular amyloid markers via PET with Pittsburgh compound B in SN regions of MCI (n = 33) and healthy controls (n = 27). From these markers, we built support vector machine learning models aiming to estimate cognitive dysfunction in MCI. RESULTS: We found that anatomical markers are significantly reduced and molecular markers are significantly elevated in SN nodes of MCI compared to healthy controls (p < .05). These altered markers in MCI patients were associated with their worse cognitive performance (p < .05). Our machine learning-based modeling further suggested that the integration of multimodal markers predicts cognitive impairment in MCI superiorly compared to using single modality-specific markers. CONCLUSIONS: These findings shed light on the underlying anatomical volumetric and molecular amyloid alterations in SN regions and show the significance of multimodal markers integration approach in better predicting cognitive impairment in MCI.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...