Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38669304

RESUMO

Zinc-ion batteries (ZIBs) are promising candidates for safe energy storage applications. However, undesirable parasitic reactions such as dendrite growth, gas evaluation, anode corrosion, and structural damage to the cathode under an acidic microenvironment severely affected cell performance. To resolve these issues, an MXene entrapped in an ionic liquid semi-solid gel polymer electrolyte (GPE) composite was explored. The molecular-level mixing of poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF), zinc trifluoromethanesulfonate (Zn(OTF)2), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) ionic liquid, and Ti3C2Tx MXene provided a controlled Zn2+ shuttle toward the anode/cathode. Ti3C2Tx/EMIBF4/Zn(OTF)2/PVHF exhibited a breaking strength of 0.36 MPa with an associated extension of 23%. The Zn//Ti3C2Tx/EMIBF4/Zn(OTF)2/PVHF//Zn symmetric cell with continuous zinc plating/stripping exhibited excellent Zn2+ ion mobility toward the anode and cathode without undesired reactions. This was confirmed by post-mortem analysis after a symmetric cell compatibility test. The as-prepared GPE with a Na3V2(PO4)3 (NVP) cathode exhibited a high chemical diffusion coefficient of 1.14 × 10-7. It also showed an outstanding reversible capacity of 89 mAh g-1 at C/10 with an average discharge plateau voltage of 1.45 V, cycle durability, and controlled self-discharge. These results suggested that the Zn2+ ions in the Ti3C2Tx/EMIBF4/Zn(OTF)2/PVHF composite are reversibly labile in the anode and cathode directions.

2.
Top Curr Chem (Cham) ; 380(5): 45, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951265

RESUMO

Glycopolymer materials have emerged as a significant biopolymer class that has piqued the scientific community's attention due to their potential applications. Recently, they have been found to be a unique synthetic biomaterial; glycopolymer materials have also been used for various applications, including direct therapeutic methods, medical adhesives, drug/gene delivery systems, and biosensor applications. Therefore, for the next stage of biomaterial research, it is essential to understand current breakthroughs in glycopolymer-based materials research. This review discusses the most widely utilized synthetic methodologies for glycopolymer-based materials, their properties based on structure-function interactions, and the significance of these materials in biosensing applications, among other topics. When creating glycopolymer materials, contemporary polymerization methods allow precise control over molecular weight, molecular weight distribution, chemical activity, and polymer architecture. This review concludes with a discussion of the challenges and complexities of glycopolymer-based biosensors, in addition to their potential applications in the future.


Assuntos
Técnicas Biossensoriais , Polímeros , Materiais Biocompatíveis , Peso Molecular , Polimerização , Polímeros/química
3.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807257

RESUMO

In this study, we used density functional theory (DFT) and natural bond orbital (NBO) analysis to determine the structural, electronic, reactivity, and conformational features of 2,5,5-trimethyl-1,3,2-di-heteroatom (X) phosphinane-2-sulfide derivatives (X = O (compound 1), S (compound 2), and Se (compound 3)). We discovered that the features improve dramatically at 6-31G** and B3LYP/6-311+G** levels. The level of theory for the molecular structure was optimized first, followed by the frontier molecular orbital theory development to assess molecular stability and reactivity. Molecular orbital calculations, such as the HOMO-LUMO energy gap and the mapping of molecular electrostatic potential surfaces (MEP), were performed similarly to DFT calculations. In addition, the electrostatic potential of the molecule was used to map the electron density on a surface. In addition to revealing molecules' size and shape distribution, this study also shows the sites on the surface where molecules are most chemically reactive.


Assuntos
Teoria Quântica , Análise Espectral Raman , Eletrônica , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Sulfetos , Termodinâmica
4.
RSC Adv ; 12(3): 1433-1450, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425211

RESUMO

Environmental heavy metal ions (HMIs) accumulate in living organisms and cause various diseases. Metal-organic frameworks (MOFs) have proven to be promising and effective materials for removing heavy metal ions from contaminated water because of their high porosity, remarkable physical and chemical properties, and high specific surface area. MOFs are self-assembling metal ions or clusters with organic linkers. Metals are used as dowel pins to build two-dimensional or three-dimensional frameworks, and organic linkers serve as carriers. Modern research has mainly focused on designing MOFs-based materials with improved adsorption and separation properties. In this review, for the first time, an in-depth look at the use of MOFs nanofiber materials for HMIs removal applications is provided. This review will focus on the synthesis, properties, and recent advances and provide an understanding of the opportunities and challenges that will arise in the synthesis of future MOFs-nanofiber composites in this area. MOFs decorated on nanofibers possess rapid adsorption kinetics, a high adsorption capacity, excellent selectivity, and good reusability. In addition, the substantial adsorption capacities are mainly due to interactions between the target ions and functional binding groups on the MOFs-nanofiber composites and the highly ordered porous structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...