Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 61(2): 442-453, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38104248

RESUMO

With the introduction of siliconized artificial membranes, various artificial feeding systems (AFS) for hard ticks (Ixodidae) have been developed over the last decades. Most AFS utilize similar core components but employ diverse approaches, materials, and experimental conditions. Published work describes different combinations of the core components without experimental optimizations for the artificial feeding of different tick species. Amblyomma americanum L., (Acari: Ixodidae) (lone star tick) is a known vector and reservoir for diverse tick-borne pathogens, such as Rickettsia amblyommatis and Ehrlichia chaffeensis. Ongoing environmental changes have supported the expansion of A. americanum into new habitats, contributing to increased tick-borne diseases in endemic areas. However, a significant knowledge gap exists in understanding the underlying mechanisms involved in A. americanum interactions with tick-borne pathogens. Here, we performed a systematic analysis and developed an optimized AFS for nymphal lone star ticks. Our results demonstrate that Goldbeater's membranes, rabbit hair, hair extract, and adult lone star ticks significantly improved the attachment rate of nymphal ticks, whereas tick frass and frass extract did not. With the optimized conditions, we achieved an attachment rate of 46 ±â€…3% and a success rate of 100% (i.e., one or more attached ticks) in each feeding experiment for nymphal lone star ticks. When fed on sheep blood spiked with R. amblyommatis, both nymphal and adult lone star ticks acquired and maintained R. amblyommatis, demonstrating the feasibility of studying A. americanum-pathogen interactions using AFS. Our study can serve as a roadmap to optimize and improve AFS for other medically relevant tick species.


Assuntos
Ixodidae , Rickettsia , Rickettsiaceae , Coelhos , Animais , Ovinos , Ixodidae/microbiologia , Amblyomma , Rickettsiales , Ninfa/microbiologia
2.
mBio ; 14(4): e0113623, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37404047

RESUMO

Francisella tularensis is a zoonotic pathogen and the causative agent of tularemia. F. tularensis replicates to high levels within the cytosol of macrophages and other host cells while subverting the host response to infection. Critical to the success of F. tularensis is its ability to delay macrophage apoptosis to maintain its intracellular replicative niche. However, the host-signaling pathway(s) modulated by F. tularensis to delay apoptosis are poorly characterized. The outer membrane channel protein TolC is required for F. tularensis virulence and its ability to suppress apoptosis and cytokine expression during infection of macrophages. We took advantage of the F. tularensis ∆tolC mutant phenotype to identify host pathways that are important for activating macrophage apoptosis and that are disrupted by the bacteria. Comparison of macrophages infected with wild-type or ∆tolC F. tularensis revealed that the bacteria interfere with TLR2-MYD88-p38 signaling at early times post infection to delay apoptosis, dampen innate host responses, and preserve the intracellular replicative niche. Experiments using the mouse pneumonic tularemia model confirmed the in vivo relevance of these findings, revealing contributions of TLR2 and MYD88 signaling to the protective host response to F. tularensis, which is modulated by the bacteria to promote virulence. IMPORTANCE Francisella tularensis is a Gram-negative intracellular bacterial pathogen and the causative agent of the zoonotic disease tularemia. F. tularensis, like other intracellular pathogens, modulates host-programmed cell death pathways to ensure its replication and survival. We previously identified the outer membrane channel protein TolC as required for the ability of F. tularensis to delay host cell death. However, the mechanism by which F. tularensis delays cell death pathways during intracellular replication is unclear despite being critical to pathogenesis. In the present study, we address this gap in knowledge by taking advantage of ∆tolC mutants of F. tularensis to uncover signaling pathways governing host apoptotic responses to F. tularensis and which are modulated by the bacteria during infection to promote virulence. These findings reveal mechanisms by which intracellular pathogens subvert host responses and enhance our understanding of the pathogenesis of tularemia.


Assuntos
Francisella tularensis , Tularemia , Camundongos , Animais , Francisella tularensis/metabolismo , Tularemia/metabolismo , Virulência , Receptor 2 Toll-Like/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Macrófagos/microbiologia , Transdução de Sinais , Apoptose , Canais Iônicos/metabolismo
3.
ACS Appl Mater Interfaces ; 15(2): 3420-3432, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36600562

RESUMO

Here, we report synergistic nanostructured surfaces combining bactericidal and bacteria-releasing properties. A polystyrene-block-poly(methyl methacrylate) (PS-block-PMMA) diblock copolymer is used to fabricate vertically oriented cylindrical PS structures ("PS nanopillars") on silicon substrates. The results demonstrate that the PS nanopillars (with a height of about 10 nm, size of about 50 nm, and spacing of about 70 nm) exhibit highly effective bactericidal and bacteria-releasing properties ("dual properties") against Escherichia coli for at least 36 h of immersion in an E. coli solution. Interestingly, the PS nanopillars coated with a thin layer (≈3 nm thick) of titanium oxide (TiO2) ("TiO2 nanopillars") show much improved dual properties against E. coli (a Gram-negative bacterium) compared to the PS nanopillars. Moreover, the dual properties emerge against Listeria monocytogenes (a Gram-positive bacterium). To understand the mechanisms underlying the multifaceted property of the nanopillars, coarse-grained molecular dynamics (MD) simulations of a lipid bilayer (as a simplified model for E. coli) in contact with a substrate containing hexagonally packed hydrophilic nanopillars were performed. The MD results demonstrate that when the bacterium-substrate interaction is strong, the lipid heads adsorb onto the nanopillar surfaces, conforming the shape of a lipid bilayer to the structure/curvature of nanopillars and generating high stress concentrations within the membrane (i.e., the driving force for rupture) at the edge of the nanopillars. Membrane rupture begins with the formation of pores between nanopillars (i.e., bactericidal activity) and ultimately leads to the membrane withdrawal from the nanopillar surface (i.e., bacteria-releasing activity). In the case of Gram-positive bacteria, the adhesion area to the pillar surface is limited due to the inherent stiffness of the bacteria, creating higher stress concentrations within a bacterial cell wall. The present study provides insight into the mechanism underlying the "adhesion-mediated" multifaceted property of nanosurfaces, which is crucial for the development of next-generation antibacterial surface coatings for relevant medical applications.


Assuntos
Escherichia coli , Bicamadas Lipídicas , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Propriedades de Superfície
4.
Ticks Tick Borne Dis ; 14(2): 102088, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36436461

RESUMO

Since its discovery in the United States in 2017, the Asian longhorned tick (Haemaphysalis longicornis) has been detected in most eastern states between Rhode Island and Georgia. Long Island, east of New York City, a recognized high-risk area for tick-borne diseases, is geographically close to New Jersey and New York sites where H. longicornis was originally found. However, extensive tick surveys conducted in 2018 did not identify H. longicornis on Long Island. In stark contrast, our 2022 tick survey suggests that H. longicornis has rapidly invaded and expanded in multiple surveying sites on Long Island (12 out of 17 sites). Overall, the relative abundance of H. longicornis was similar to that of lone star ticks, Amblyomma americanum, a previously recognized tick species abundantly present on Long Island. Interestingly, our survey suggests that H. longicornis has expanded within the Appalachian forest ecological zone of Long Island's north shore compared to the Pine Barrens located on the south shore of Long Island. The rapid invasion and expansion of H. longicornis into an insular environment are different from the historical invasion and expansion of two native tick species, Ixodes scapularis (blacklegged tick or deer tick) and A. americanum, in Long Island. The implications of H. longicornis transmitting or introducing tick-borne pathogens of public health importance remain unknown.


Assuntos
Ixodidae , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Estados Unidos , Cidade de Nova Iorque , Georgia , Amblyomma
6.
PLoS Pathog ; 17(12): e1010103, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871329

RESUMO

Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity.


Assuntos
Proteínas de Bactérias/imunologia , Evasão da Resposta Imune/imunologia , Interferon gama/biossíntese , Linfócitos Intraepiteliais/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Animais , Humanos , Camundongos , Yersinia pseudotuberculosis/imunologia
7.
Nat Commun ; 12(1): 5207, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471127

RESUMO

Uropathogenic Escherichia coli assemble surface structures termed pili or fimbriae to initiate infection of the urinary tract. P pili facilitate bacterial colonization of the kidney and pyelonephritis. P pili are assembled through the conserved chaperone-usher pathway. Much of the structural and functional understanding of the chaperone-usher pathway has been gained through investigations of type 1 pili, which promote binding to the bladder and cystitis. In contrast, the structural basis for P pilus biogenesis at the usher has remained elusive. This is in part due to the flexible and variable-length P pilus tip fiber, creating structural heterogeneity, and difficulties isolating stable P pilus assembly intermediates. Here, we circumvent these hindrances and determine cryo-electron microscopy structures of the activated PapC usher in the process of secreting two- and three-subunit P pilus assembly intermediates, revealing processive steps in P pilus biogenesis and capturing new conformational dynamics of the usher assembly machine.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Escherichia coli Uropatogênica/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica , Escherichia coli Uropatogênica/genética
8.
J Urol ; 203(2): 357-364, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31430245

RESUMO

PURPOSE: We sought to determine the composition and initiation site of bacterial biofilm on indwelling urinary catheters and to track biofilm progression with time. MATERIALS AND METHODS: Indwelling urinary catheters were collected from 2 tertiary care centers following removal from patients. Indwelling time was noted and catheters were de-identified. Catheters were sectioned, stained for biofilms and analyzed by spectrophotometry and visualization. Biofilm colonization patterns were analyzed using descriptive statistical analysis and bacterial composition was determined using next generation sequencing. RESULTS: We collected and analyzed a total of 33 catheters from 26 males and 7 females with indwelling time ranging from 15 minutes to 43 days. Biofilm colonization was consistently high on the region of the balloon for all indwelling times. After week 1 the distal third of the catheter had higher biofilm colonization than the proximal third (week 2 p=0.034). At all indwelling times the intraluminal surface of the catheter had greater biofilm colonization than the outer surface. Next generation sequencing detected potential uropathogenic bacteria in all 10 analyzed samples. CONCLUSIONS: The catheter balloon, its distal aspect and its lumen were the predominant locations of biofilm comprising uropathogenic bacteria. Strategies to prevent or treat biofilm should be targeted to these areas.


Assuntos
Bactérias/isolamento & purificação , Biofilmes , Cateteres de Demora/microbiologia , Contaminação de Equipamentos , Cateteres Urinários/microbiologia , Feminino , Humanos , Masculino , Fatores de Tempo
10.
J Biol Chem ; 294(39): 14357-14369, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31391254

RESUMO

Bacterial pathogens assemble adhesive surface structures termed pili or fimbriae to initiate and sustain infection of host tissues. Uropathogenic Escherichia coli, the primary causative agent of urinary tract infections, expresses type 1 and P pili required for colonization of the bladder and kidney, respectively. These pili are assembled by the conserved chaperone-usher (CU) pathway, in which a periplasmic chaperone works together with an outer membrane (OM) usher protein to build and secrete the pilus fiber. Previously, we found that the small molecule and antiparasitic drug nitazoxanide (NTZ) inhibits CU pathway-mediated pilus biogenesis in E. coli by specifically interfering with proper maturation of the usher protein in the OM. The usher is folded and inserted into the OM by the ß-barrel assembly machine (BAM) complex, which in E. coli comprises five proteins, BamA-E. Here, we show that sensitivity of the usher to NTZ is modulated by BAM expression levels and requires the BamB and BamE lipoproteins. Furthermore, a genetic screen for NTZ-resistant bacterial mutants isolated a mutation in the essential BamD lipoprotein. These findings suggest that NTZ selectively interferes with an usher-specific arm of the BAM complex, revealing new details of the usher folding pathway and BAM complex function. Evaluation of a set of NTZ derivatives identified compounds with increased potency and disclosed that NTZ's nitrothiazole ring is critical for usher inhibition. In summary, our findings indicate highly specific effects of NTZ on the usher folding pathway and have uncovered NTZ analogs that specifically decrease usher levels in the OM.


Assuntos
Antiparasitários/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Tiazóis/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Chaperonas Moleculares/química , Nitrocompostos , Escherichia coli Uropatogênica/efeitos dos fármacos
11.
EcoSal Plus ; 8(2)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30873935

RESUMO

The chaperone-usher (CU) pathway is a conserved secretion system dedicated to the assembly of a superfamily of virulence-associated surface structures by a wide range of Gram-negative bacteria. Pilus biogenesis by the CU pathway requires two specialized assembly components: a dedicated periplasmic chaperone and an integral outer membrane assembly and secretion platform termed the usher. The CU pathway assembles a variety of surface fibers, ranging from thin, flexible filaments to rigid, rod-like organelles. Pili typically act as adhesins and function as virulence factors that mediate contact with host cells and colonization of host tissues. Pilus-mediated adhesion is critical for early stages of infection, allowing bacteria to establish a foothold within the host. Pili are also involved in modulation of host cell signaling pathways, bacterial invasion into host cells, and biofilm formation. Pili are critical for initiating and sustaining infection and thus represent attractive targets for the development of antivirulence therapeutics. Such therapeutics offer a promising alternative to broad-spectrum antibiotics and provide a means to combat antibiotic resistance and treat infection while preserving the beneficial microbiota. A number of strategies have been taken to develop antipilus therapeutics, including vaccines against pilus proteins, competitive inhibitors of pilus-mediated adhesion, and small molecules that disrupt pilus biogenesis. Here we provide an overview of the function and assembly of CU pili and describe current efforts aimed at interfering with these critical virulence structures.


Assuntos
Sistemas de Secreção Bacterianos/efeitos dos fármacos , Fímbrias Bacterianas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Chaperonas Moleculares/metabolismo , Adesinas Bacterianas/metabolismo , Ensaios Clínicos como Assunto , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Modelos Moleculares , Escherichia coli Uropatogênica , Virulência
12.
Infect Immun ; 87(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30642895

RESUMO

Periodontitis is a progressive inflammatory disease that affects roughly half of American adults. Colonization of the oral cavity by the Gram-negative bacterial pathogen Porphyromonas gingivalis is a key event in the initiation and development of periodontal disease. Adhesive surface structures termed fimbriae (pili) mediate interactions of P. gingivalis with other bacteria and with host cells throughout the course of disease. The P. gingivalis fimbriae are assembled via a novel mechanism that involves proteolytic processing of lipidated precursor subunits and their subsequent polymerization on the bacterial surface. Given their extracellular assembly mechanism and central roles in pathogenesis, the P. gingivalis fimbriae are attractive targets for anti-infective therapeutics to prevent or treat periodontal disease. Here we confirm that conserved sequences in the N and C termini of the Mfa1 fimbrial subunit protein perform critical roles in subunit polymerization. We show that treatment of P. gingivalis with peptides corresponding to the conserved C-terminal region inhibits the extracellular assembly of Mfa fimbriae on the bacterial surface. We also show that peptide treatment interferes with the function of Mfa fimbriae by reducing P. gingivalis adhesion to Streptococcus gordonii in a dual-species biofilm model. Finally, we show that treatment of bacteria with similar peptides inhibits extracellular polymerization of the Fim fimbriae, which are also expressed by P. gingivalis These results support a donor strand-based assembly mechanism for the P. gingivalis fimbriae and demonstrate the feasibility of using extracellular peptides to disrupt the biogenesis and function of these critical periodontal disease virulence factors.


Assuntos
Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Porphyromonas gingivalis/fisiologia , Biofilmes , Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Porphyromonas gingivalis/citologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670554

RESUMO

Francisella tularensis is a Gram-negative, facultative intracellular pathogen and the causative agent of tularemia. Previous studies with the attenuated live vaccine strain (LVS) identified a role for the outer membrane protein TolC in modulation of host cell responses during infection and virulence in the mouse model of tularemia. TolC is an integral part of efflux pumps that export small molecules and type I secretion systems that export a range of bacterial virulence factors. In this study, we analyzed TolC and its two orthologs, FtlC and SilC, present in the fully virulent F. tularensis Schu S4 strain for their contributions to multidrug efflux, suppression of innate immune responses, and virulence. We found that each TolC ortholog participated in multidrug efflux, with overlapping substrate specificities for TolC and FtlC and a distinct substrate profile for SilC. In contrast to their shared roles in drug efflux, only TolC functioned in the modulation of macrophage apoptotic and proinflammatory responses to Schu S4 infection, consistent with a role in virulence factor delivery to host cells. In agreement with previous results with the LVS, the Schu S4 ΔtolC mutant was highly attenuated for virulence in mice by both the intranasal and intradermal routes of infection. Unexpectedly, FtlC was also critical for Schu S4 virulence, but only by the intradermal route. Our data demonstrate a conserved and critical role for TolC in modulation of host immune responses and Francisella virulence and also highlight strain- and route-dependent differences in the pathogenesis of tularemia.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Farmacorresistência Bacteriana Múltipla , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/patogenicidade , Tularemia/microbiologia , Animais , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Modelos Animais de Doenças , Feminino , Francisella tularensis/genética , Francisella tularensis/metabolismo , Deleção de Genes , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Tularemia/genética , Tularemia/imunologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
14.
ACS Macro Lett ; 8(9): 1153-1159, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-35619442

RESUMO

We report that the nanometer-scale architecture of polymer chains plays a crucial role in its protein resistant property over surface chemistry. Protein-repellent (noncharged), few nanometer thick polymer layers were designed with homopolymer chains physisorbed on solids. We evaluated the antifouling property of the hydrophilic or hydrophobic adsorbed homopolymer chains against bovine serum albumin in water. Molecular dynamics simulations along with sum frequency generation spectroscopy data revealed the self-organized nanoarchitecture of the adsorbed chains composed of inner nematic-like ordered segments and outer brush-like segments across homopolymer systems with different interactions among a polymer, substrate, and interfacial water. We propose that this structure acts as a dual barrier against protein adsorption.

15.
Nature ; 562(7727): 444-447, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283140

RESUMO

Pathogenic bacteria such as Escherichia coli assemble surface structures termed pili, or fimbriae, to mediate binding to host-cell receptors1. Type 1 pili are assembled via the conserved chaperone-usher pathway2-5. The outer-membrane usher FimD recruits pilus subunits bound by the chaperone FimC via the periplasmic N-terminal domain of the usher. Subunit translocation through the ß-barrel channel of the usher occurs at the two C-terminal domains (which we label CTD1 and CTD2) of this protein. How the chaperone-subunit complex bound to the N-terminal domain is handed over to the C-terminal domains, as well as the timing of subunit polymerization into the growing pilus, have previously been unclear. Here we use cryo-electron microscopy to capture a pilus assembly intermediate (FimD-FimC-FimF-FimG-FimH) in a conformation in which FimD is in the process of handing over the chaperone-bound end of the growing pilus to the C-terminal domains. In this structure, FimF has already polymerized with FimG, and the N-terminal domain of FimD swings over to bind CTD2; the N-terminal domain maintains contact with FimC-FimF, while at the same time permitting access to the C-terminal domains. FimD has an intrinsically disordered N-terminal tail that precedes the N-terminal domain. This N-terminal tail folds into a helical motif upon recruiting the FimC-subunit complex, but reorganizes into a loop to bind CTD2 during handover. Because both the N-terminal and C-terminal domains of FimD are bound to the end of the growing pilus, the structure further suggests a mechanism for stabilizing the assembly intermediate to prevent the pilus fibre diffusing away during the incorporation of thousands of subunits.


Assuntos
Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/ultraestrutura , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/metabolismo , Adesinas de Escherichia coli/ultraestrutura , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
16.
EcoSal Plus ; 8(1)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29536829

RESUMO

Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.


Assuntos
Proteínas de Fímbrias/genética , Fímbrias Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Salmonella/metabolismo , Escherichia coli Uropatogênica/metabolismo , Animais , Proteínas de Fímbrias/metabolismo , Humanos , Redes e Vias Metabólicas , Camundongos , Modelos Moleculares , Salmonella/patogenicidade , Escherichia coli Uropatogênica/patogenicidade
17.
Mol Microbiol ; 107(4): 523-541, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29240272

RESUMO

Francisella tularensis is a highly virulent Gram-negative bacterial pathogen that causes the zoonotic disease tularemia. F. novicida, a model tularemia strain, produces spherical outer membrane vesicles (OMV), as well as novel tubular vesicles and extensions of the cell surface. These OMV and tubes (OMV/T) are produced in a regulated manner and contain known virulence factors. Mechanisms by which bacterial vesicles are produced and regulated are not well understood. We performed a genetic screen in F. novicida to decipher the molecular basis for regulated OMV/T formation, and identified both hypo- and hyper-vesiculating mutants. Mutations in fumA and tktA, involved in central carbon metabolism, and in FTN_0908 and FTN_1037, of unknown function, resulted in severe defects in OMV/T production. Cysteine deprivation was identified as the signal that triggers OMV/T formation in F. novicida during growth in rich medium. We also found that fully virulent F. tularensis produces OMV/T in a similarly regulated manner. Further analysis revealed that OMV/T production is responsive to deprivation of essential amino acids in addition to cysteine, and that the hypo-vesiculating mutants are defective in responding to this signal. Thus, amino acid starvation, such as encountered by Francisella during host cell invasion, regulates the production of membrane-derived structures.


Assuntos
Aminoácidos Essenciais/metabolismo , Carbono/metabolismo , Membrana Celular/ultraestrutura , Cisteína/deficiência , Vesículas Extracelulares/metabolismo , Francisella/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Francisella/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteômica , Fatores de Virulência/metabolismo
18.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630061

RESUMO

The Suppressor of TCR signaling proteins (Sts-1 and Sts-2) are two homologous phosphatases that negatively regulate signaling pathways in a number of hematopoietic lineages, including T lymphocytes. Mice lacking Sts expression are characterized by enhanced T cell responses. Additionally, a recent study demonstrated that Sts-/- mice are profoundly resistant to systemic infection by Candida albicans, with resistance characterized by enhanced survival, more rapid fungal clearance in key peripheral organs, and an altered inflammatory response. To investigate the role of Sts in the primary host response to infection by a bacterial pathogen, we evaluated the response of Sts-/- mice to infection by a Gram-negative bacterial pathogen. Francisella tularensis is a facultative bacterial pathogen that replicates intracellularly within a variety of cell types and is the causative agent of tularemia. Francisella infections are characterized by a delayed immune response, followed by an intense inflammatory reaction that causes widespread tissue damage and septic shock. Herein, we demonstrate that mice lacking Sts expression are significantly resistant to infection by the live vaccine strain (LVS) of F. tularensis Resistance is characterized by reduced lethality following high-dose intradermal infection, an altered cytokine response in the spleen, and enhanced bacterial clearance in multiple peripheral organs. Sts-/- bone marrow-derived monocytes and neutrophils, infected with F. tularensis LVS ex vivo, display enhanced restriction of intracellular bacteria. These observations suggest the Sts proteins play an important regulatory role in the host response to bacterial infection, and they underscore a role for Sts in regulating functionally relevant immune response pathways.


Assuntos
Suscetibilidade a Doenças , Francisella tularensis/imunologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Tularemia/imunologia , Estruturas Animais/microbiologia , Estruturas Animais/patologia , Animais , Carga Bacteriana , Citocinas/análise , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Monoéster Fosfórico Hidrolases/deficiência , Proteínas Tirosina Fosfatases/deficiência , Receptores de Antígenos de Linfócitos T/deficiência , Análise de Sobrevida
19.
Dis Aquat Organ ; 122(1): 21-33, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27901501

RESUMO

Quahog parasite unknown (QPX) is a protistan parasite capable of causing deadly infections in the hard clam Mercenaria mercenaria, one of the most valuable shellfish species in the USA. QPX is an extracellular parasite found mostly in the connective tissue of clam mantle and, in more severe cases of infection, other clam organs. Histopathologic examinations revealed that QPX cells within clam tissues are typically surrounded by hollow areas that have been hypothesized to be, at least in part, a result of extracellular digestion of clam proteins by the parasite. We investigated peptidase activity in QPX extracellular secretions using sodium dodecyl sulfate-polyacrylamide gels containing gelatin as a co-polymerized substrate. Multiple peptidase activity bands of molecular weights ranging from 20 to 100 kDa were detected in QPX secretions derived from a variety of culture media. One major band of approximately 35 kDa was composed of subtilisin-like peptidases that were released by QPX cells in all studied media, suggesting that these are the most common peptidases used by QPX for nutrient acquisition. PCR quantification of mRNA encoding QPX subtilisins revealed that their expression changes with the protein substrate used in the culture media. A fast protein liquid chromatography (FPLC) was used to fractionate QPX extracellular secretions. An FPLC-fraction containing a subtilisin-type serine peptidase was able to digest clam plasma proteins, suggesting that this peptidase might be involved in the disease process, and making it a good candidate for further investigation as a possible virulence factor of the parasite.


Assuntos
Mercenaria/parasitologia , Peptídeo Hidrolases/metabolismo , Estramenópilas/fisiologia , Sequência de Aminoácidos , Animais , Regulação Enzimológica da Expressão Gênica , Interações Hospedeiro-Parasita , Estramenópilas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...