Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 43(7): 2599-2609, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38381642

RESUMO

Methods for unsupervised domain adaptation (UDA) help to improve the performance of deep neural networks on unseen domains without any labeled data. Especially in medical disciplines such as histopathology, this is crucial since large datasets with detailed annotations are scarce. While the majority of existing UDA methods focus on the adaptation from a labeled source to a single unlabeled target domain, many real-world applications with a long life cycle involve more than one target domain. Thus, the ability to sequentially adapt to multiple target domains becomes essential. In settings where the data from previously seen domains cannot be stored, e.g., due to data protection regulations, the above becomes a challenging continual learning problem. To this end, we propose to use generative feature-driven image replay in conjunction with a dual-purpose discriminator that not only enables the generation of images with realistic features for replay, but also promotes feature alignment during domain adaptation. We evaluate our approach extensively on a sequence of three histopathological datasets for tissue-type classification, achieving state-of-the-art results. We present detailed ablation experiments studying our proposed method components and demonstrate a possible use-case of our continual UDA method for an unsupervised patch-based segmentation task given high-resolution tissue images. Our code is available at: https://github.com/histocartography/multi-scale-feature-alignment.


Assuntos
Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Humanos , Algoritmos , Aprendizado de Máquina não Supervisionado , Aprendizado Profundo , Animais , Bases de Dados Factuais , Redes Neurais de Computação
2.
Med Image Anal ; 89: 102915, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633177

RESUMO

The identification and segmentation of histological regions of interest can provide significant support to pathologists in their diagnostic tasks. However, segmentation methods are constrained by the difficulty in obtaining pixel-level annotations, which are tedious and expensive to collect for whole-slide images (WSI). Though several methods have been developed to exploit image-level weak-supervision for WSI classification, the task of segmentation using WSI-level labels has received very little attention. The research in this direction typically require additional supervision beyond image labels, which are difficult to obtain in real-world practice. In this study, we propose WholeSIGHT, a weakly-supervised method that can simultaneously segment and classify WSIs of arbitrary shapes and sizes. Formally, WholeSIGHT first constructs a tissue-graph representation of WSI, where the nodes and edges depict tissue regions and their interactions, respectively. During training, a graph classification head classifies the WSI and produces node-level pseudo-labels via post-hoc feature attribution. These pseudo-labels are then used to train a node classification head for WSI segmentation. During testing, both heads simultaneously render segmentation and class prediction for an input WSI. We evaluate the performance of WholeSIGHT on three public prostate cancer WSI datasets. Our method achieves state-of-the-art weakly-supervised segmentation performance on all datasets while resulting in better or comparable classification with respect to state-of-the-art weakly-supervised WSI classification methods. Additionally, we assess the generalization capability of our method in terms of segmentation and classification performance, uncertainty estimation, and model calibration. Our code is available at: https://github.com/histocartography/wholesight.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Calibragem , Incerteza
3.
Med Image Anal ; 89: 102924, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597316

RESUMO

Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on three datasets with different organs and modalities, where it substantially outperforms existing techniques. Our code is available at: https://github.com/histocartography/generative-appearance-replay.

4.
AMIA Annu Symp Proc ; 2020: 793-802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33936454

RESUMO

Applying state-of-the-art machine learning and natural language processing on approximately one million of teleconsultation records, we developed a triage system, now certified and in use at the largest European telemedicine provider. The system evaluates care alternatives through interactions with patients via a mobile application. Reasoning on an initial set of provided symptoms, the triage application generates AI-powered, personalized questions to better characterize the problem and recommends the most appropriate point of care and time frame for a consultation. The underlying technology was developed to meet the needs for performance, transparency, user acceptance and ease of use, central aspects to the adoption of AI-based decision support systems. Providing such remote guidance at the beginning of the chain of care has significant potential for improving cost efficiency, patient experience and outcomes. Being remote, always available and highly scalable, this service is fundamental in high demand situations, such as the current COVID-19 outbreak.


Assuntos
Inteligência Artificial , COVID-19/prevenção & controle , Consulta Remota , Telemedicina , Triagem , Algoritmos , COVID-19/epidemiologia , Sistemas de Apoio a Decisões Administrativas , Sistemas Inteligentes , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA