Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 8580-8588, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38320233

RESUMO

This study introduces a sustainable approach to designing organic cathode materials (OCMs) for lithium-ion batteries as a potential replacement for traditional metal-based electrodes. Utilizing green synthetic methodologies, we synthesized and characterized five distinct quinone derivatives and investigated their electrochemical attributes within Li-ion battery architectures. Notably, the observed specific capacities were lower than the theoretical predictions, suggesting limitations in achieving efficient redox reactions in a coin-cell configuration. Among the quinone derivatives studied, one variant derived from natural vanillin showed superior cycle stability, maintaining 58% capacity retention over 95 charge-discharge cycles, and achieving a Coulombic efficiency of 90%. Importantly, we discovered that the commonly used Super-P conductive carbon did not yield any measurable battery performance; instead, these quinones necessitated the incorporation of graphene nanoplatelets as the conductive matrix. Through a facile one-step synthesis in ethanol or water, we have demonstrated a viable synthetic route for producing OCMs, albeit with moderate performances, which have attempted to address common concerns of high solubility and poor redox reactivity of previous OCMs, thereby offering a sustainable pathway for the development of organic-based energy storage devices.

2.
Phys Chem Chem Phys ; 26(2): 946-957, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38088085

RESUMO

Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3 onto various substrates without any thickness limitation, in this study, using density functional theory (DFT), we assessed the structural stability of a group of two-dimensional perovskite-type materials which we call perovskenes. Specifically, we analyzed the stability of 2D SrTiO3, SrZrO3, BaTiO3, and BaZrO3 monolayers. Our simulations revealed that the 2D monolayers of SrTiO3, BaTiO3, and BaZrO3 are at least meta-stable, as confirmed by cohesive energy calculations, evaluation of elastic constants, and simulation of phonon dispersion modes. With this information, we proceeded to investigate the electronic, optical, and thermoelectric properties of these perovskenes. To gain insight into their promising applications, we investigated the electronic and optical properties of these 2D materials and found that they are wide bandgap semiconductors with significant absorption and reflection in the ultraviolet (UV) region of the electromagnetic field, suggesting them as promising materials for use in UV shielding applications. In addition, evaluating their thermoelectric factors revealed that these materials become better conductors of electricity and heat as the temperature rises. They can, hence, convert temperature gradients into electrical energy and transport electrical charges, which is beneficial for efficient power generation in thermoelectric devices. This work opens a new window for designing a novel family of 2D perovskite type materials termed perovskenes. The vast variety of different perovskite compounds and their variety of applications suggest deeper studies on the perovskenes materials for use in innovative technologies.

3.
ACS Appl Mater Interfaces ; 15(25): 29674-29699, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37326582

RESUMO

In the 21st century, proton exchange membrane fuel cells (PEMFCs) represent a promising source of power generation due to their high efficiency compared with coal combustion engines and eco-friendly design. Proton exchange membranes (PEMs), being the critical component of PEMFCs, determine their overall performance. Perfluorosulfonic acid (PFSA) based Nafion and nonfluorinated-based polybenzimidazole (PBI) membranes are commonly used for low- and high-temperature PEMFCs, respectively. However, these membranes have some drawbacks such as high cost, fuel crossover, and reduction in proton conductivity at high temperatures for commercialization. Here, we report the requirements of functional properties of PEMs for PEMFCs, the proton conduction mechanism, and the challenges which hinder their commercial adaptation. Recent research efforts have been focused on the modifications of PEMs by composite materials to overcome their drawbacks such as stability and proton conductivity. We discuss some current developments in membranes for PEMFCs with special emphasis on hybrid membranes based on Nafion, PBI, and other nonfluorinated proton conducting membranes prepared through the incorporation of different inorganic, organic, and hybrid fillers.

4.
Small ; 19(36): e2301904, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37118860

RESUMO

All-solid-state lithium batteries (ASSLBs) are prepared using garnet-type solid electrolytes by quick liquid phase sintering (Q-LPS) without applying high pressure during the sintering. The cathode layers are quickly sintered with a heating rate of 50-100 K min-1 and a dwell time of 10 min. The battery performance is dramatically improved by simultaneously optimizing materials, processes, and architectures, and the initial discharge capacity of the cell with a LiCoO2 -loading of 8.1 mg reaches 1 mAh cm-2 and 130 mAh g-1 at 25 °C. The all-solid-state cell exhibits capacity at a reduced temperature (10 °C) or a relatively high rate (0.1 C) compared to the previous reports. The Q-LPS would be suitable for large-scale manufacturing of ASSLBs. The multiphysics analyses indicate that the internal stress reaches 1 GPa during charge/discharge, which would induce several mechanical failures of the cells: broken electron networks, broken ion networks, separation of interfaces, and delamination of layers. The experimental results also support these failures.

5.
ACS Omega ; 7(39): 34710-34717, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211051

RESUMO

Improving the energy and power densities of sodium-ion batteries is a prime challenge to establish this energy storage technology to be on par with state-of-the-art lithium-ion batteries. The energy density of the sodium-ion batteries is limited due to the lower redox potential of their electrode materials compared to that of the corresponding Li analogues; however, it can be overcome by triggering the anionic redox. Although anionic redox has received significant research interest, a clear understanding of the underlying mechanism for delivery of high capacity by utilizing anionic redox is still lacking. Formidable challenges associated with the utilization of anionic redox such as rapid material degradation, voltage fade, and oxygen release hinder its practical applications. Given the great potential of anionic redox chemistry for developing high-energy batteries, in this mini-review, the recent mechanistic understanding, electrode material degradation pathways including oxygen release, and strategies to trigger anionic redox are discussed. An overview of the existing potential and future research directions of sodium-ion batteries involving anionic reaction is provided at the end.

6.
ACS Appl Mater Interfaces ; 14(11): 13388-13399, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35274931

RESUMO

A detailed study aimed at understanding and confirming the reported highly promising performance of a La0.3Sr0.7Fe0.7Cr0.3O3-δ (LSFCr) perovskite catalyst in CO2/CO mixtures, for use in reversible solid oxide fuel cells (RSOFCs), is reported in this work, with an emphasis on chemical and performance stability. This work includes an X-ray diffraction (XRD), thermogravimetric analysis (TGA), and electrochemical study in a range of pO2 atmospheres (pure CO2, CO alone (balance N2), and a 90-70% CO2/10-30% CO containing mixture), related to the different conditions that could be encountered during CO2 reduction at the cathode. Powdered LSFCr remains structurally stable in 20-100% CO2 (balance N2, pO2 = 10-11-10-12 atm) without any decomposition. However, in 30% CO (balance N2, pO2 ∼ 10-26 atm), a Ruddlesden-Popper phase, Fe nanoparticles, and potentially some coke are observed to form at 800 °C. However, this can be reversed and the original perovskite can be recovered by heat treatment in air at 800 °C. While no evidence for coke formation is obtained in 90-70% CO2/10-30% CO (pO2 = 10-17-10-18 atm) mixtures at 800 °C, in 70 CO2/30 CO, minor impurities of SrCO3 and Fe nanoparticles were observed, with the latter potentially beneficial to the electrochemical activity of the perovskite. Consistent with prior work, symmetrical two-electrode full cells (LSFCr used at both electrodes), fed with the various CO2/CO gas mixtures at one electrode and air at the other, showed excellent electrochemical performance at 800 °C, both in the SOFC and in SOEC modes. Also, LSFCr exhibits excellent stability during CO2 electrolysis in medium-term potentiostatic tests in all gas mixtures, indicative of its excellent promise as an electrode material for use in symmetrical solid oxide cells.

7.
Inorg Chem ; 60(17): 12883-12892, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34492771

RESUMO

Distinct facets of an electrocatalyst can promote polysulfide (Li2Sn (n = 4, 6, 8) and Li2Sm (m = 1, 2)) redox kinetics in lithium-sulfur (Li-S) battery chemistry. Herein, we report that the (100) facet of tungsten disulfide (e-WS2) generated in situ by electrochemical pulverization exhibits onset potentials of 2.52 and 2.32 V vs Li/Li+, respectively, for the reduction of polysulfides Li2Sn and Li2Sm, which is unprecedented till date. In a comparable study, bulk WS2 was synthesized ex situ. The transmission electron microscopy (TEM) analysis reveals that the (100) facet was dominant in e-WS2, while the (002) facet was pronounced in bulk WS2. The density functional theory (DFT) analysis indicates that the (100) facet displays metallic-like behavior, which is highly desired for enhanced polysulfide redox kinetics. We believe that the e-WS2 produced can potentially be an excellent electrocatalyst for other applications such as hydrogen evolution reaction (HER), photocatalysis, and CO2 reduction.

9.
Nanotechnology ; 32(48)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-33706303

RESUMO

Quinary and senary non-stoichiometric double perovskites such as Ba2Ca0.66Nb1.34-xFexO6-δ(BCNF) have been utilized for gas sensing, solid oxide fuel cells and thermochemical CO2reduction. Herein, we examined their potential as narrow bandgap semiconductors for use in solar energy harvesting. A cobalt co-doped BCNF, Ba2Ca0.66Nb0.68Fe0.33Co0.33O6-δ(BCNFCo), exhibited an optical absorption edge at ∼800 nm,p-type conduction and a distinct photoresponse up to 640 nm while demonstrating high thermochemical stability. A nanocomposite of BCNFCo and g-C3N4(CN) was prepared via a facile solvent-assisted exfoliation/blending approach using dichlorobenzene and glycerol at a moderate temperature. The exfoliation of g-C3N4followed by wrapping on perovskite established an effective heterojunction between the materials for charge separation. The conjugated 2D sheets of CN enabled better charge migration resulting in increased photoelectrochemical performance. A blend composed of 40 wt% perovskites and CN performed optimally, whilst achieving a photocurrent density as high as 1.5 mA cm-2for sunlight-driven water-splitting with a Faradaic efficiency as high as ∼88%.

11.
ACS Appl Mater Interfaces ; 12(32): 36119-36127, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32662623

RESUMO

Chemical stability of garnet-type lithium ion conductors is one of the critical issues in their application in all-solid-state batteries. Here, we conducted quantitative analysis of impurity layers on the garnet-type solid electrolytes, Li6.5La3-xAExZr1.5-xTa0.5+xO12 (x = 0 and 0.1; AE = Ca, Sr, and Ba), by means of X-ray photoelectron spectroscopy (XPS) and electrochemical methods. Two complimentary XPS techniques were employed: (i) background analyses by Tougaard's method and (ii) relative intensity analyses of La 3d/La 4d spectra to determine the surface chemical composition. XPS revealed that even after cleaning by annealing and polishing, the surface is covered by LiOH- and Li2CO3-based compounds with a thickness of 4-6 nm within 30 min as a result of the reaction with traces of H2O (<0.5 ppm) and CO2 (<5 ppm) in an Ar-filled glovebox. The sensitivity to H2O and CO2 depends on the basicity of dopants. Ba-doped solid electrolytes exhibited the thickest impurity layers compared to Sr- and Ca-doped compounds. A surface cleaning process, consisting of annealing and polishing, effectively reduces the charge-transfer resistance to 10-15 Ω cm2 because of negligible impurity layers. Highest short-circuit tolerance is obtained for a 700 °C annealed specimen (critical current density: 0.5 mA cm-2), which is possibly due to the strengthened grain boundaries by Li2CO3 among grains around its melting point.

12.
Chem Rev ; 120(10): 4257-4300, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32271022

RESUMO

Solid-state batteries with desirable advantages, including high-energy density, wide temperature tolerance, and fewer safety-concerns, have been considered as a promising energy storage technology to replace organic liquid electrolyte-dominated Li-ion batteries. Solid-state electrolytes (SSEs) as the most critical component in solid-state batteries largely lead the future battery development. Among different types of solid-state electrolytes, garnet-type Li7La3Zr2O12 (LLZO) solid-state electrolytes have particularly high ionic conductivity (10-3 to 10-4 S/cm) and good chemical stability against Li metal, offering a great opportunity for solid-state Li-metal batteries. Since the discovery of garnet-type LLZO in 2007, there has been an increasing interest in the development of garnet-type solid-state electrolytes and all solid-state batteries. Garnet-type electrolyte has been considered one of the most promising and important solid-state electrolytes for batteries with potential benefits in energy density, electrochemical stability, high temperature stability, and safety. In this Review, we will survey recent development of garnet-type LLZO electrolytes with discussions of experimental studies and theoretical results in parallel, LLZO electrolyte synthesis strategies and modifications, stability of garnet solid electrolytes/electrodes, emerging nanostructure designs, degradation mechanisms and mitigations, and battery architectures and integrations. We will also provide a target-oriented research overview of garnet-type LLZO electrolyte and its application in various types of solid-state battery concepts (e.g., Li-ion, Li-S, and Li-air), and we will show opportunities and perspectives as guides for future development of solid electrolytes and solid-state batteries.

13.
Dalton Trans ; 49(13): 4022-4029, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32202280

RESUMO

A lanthanum(iii) metal-organic framework, PCMOF21-AcO [La2(H2L)1.5(AcO)3·(H2O)5.59], with a 3-D network linked by dicationic bis(dimethylphosphonato)bipiperidinium units and both coordinated and free acetate counter anions is reported. PCMOF21-AcO was water stable and showed very good proton conductivity >10-3 S cm-1 at 85 °C and 95% relative humidity. PCMOF21-AcO also showed a bimodal particle size distribution and so proton conductivity was further examined as a function of particle size. Large (≥220 µm), intermediate (125 ≤x < 180 µm) and small (<38 µm) particles were sieved and proton conductivity compared. The larger particle samples showed better proton conduction, an observation that supports grain boundaries being a hurdle to proton conduction rather than an enabler (e.g. by degradation routes enabling ion mobility). Proton conductivity as a function of pelletization pressure was also studied and affirmed that, for this system, the single semicircular feature observed in impedance analysis accounted for bulk and grain boundary contributions.

14.
J Hazard Mater ; 389: 121845, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31862354

RESUMO

Polycyclic aromatic hydrocarbons (PAH) are organic pollutants that require remediation due to their detrimental impact on human and environmental health. In this study, we used a novel approach of sequestering a model PAH, phenanthrene, onto a solid carbon matrix bioanode in a microbial fuel cell (MFC) to assess its biodegradation coupled with power generation. Here, the bioanode serves as a site for enrichment of electroactive and hydrocarbon-degrading microorganisms, which can simultaneously act to biodegrade a pollutant and generate power. Carbon cloth electrodes loaded with two rates of phenanthrene (2 and 20 mg cm-2) were compared using dual chamber MFCs that were operated for 50 days. The lower loading rate of 2 mg cm-2 was most efficient in the degradation of phenanthrene and had higher power production capacities (37 mW m-2) as compared to the higher loading rate of 20 mg cm-2 (power production of 19.2 mW m-2). FTIR (Fourier-Transform Infrared Spectroscopy) analyses showed a depletion in absorbance peak signals associated with phenanthrene. Microbes known to have electroactive properties or phenanthrene biodegradation abilities like Pseudomonas, Rhodococcus, Thauera and Ralstonia were enriched over time in the MFCs, substantiating the electrochemical and FTIR analyses. The MFC approach taken here thus offers great promise towards PAH bioelectroremediation.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Técnicas Eletroquímicas/métodos , Consórcios Microbianos , Fenantrenos/análise , Poluentes do Solo/análise , Anaerobiose , Biodegradação Ambiental , DNA/genética , Eletrodos , Consórcios Microbianos/genética , Solo/química , Microbiologia do Solo , Fuligem/química
15.
ACS Appl Mater Interfaces ; 11(39): 35729-35737, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31483601

RESUMO

Here, we report that in situ MoS2 and S cathodes (MGC) prepared by simple decomposition of (NH4)2MoS4 facilitate direct formation of Li2S and suppress the long-term problem associated with polysulphide shuttling in Li-S batteries. For comparison, we prepared ex situ MoS2 and S cathodes (EMS) with a similar S/MoS2 mole ratio to that of in situ-prepared cathodes. Discharge capacity of EMS cathodes dropped by 80% after first few cycles, while assembled MGC cells demonstrated an initial discharge capacity of 1649 mA h/g, achieving close to theoretical capacity of elemental sulfur (1675 mA h/g) at C/3 and a reversible capacity of 1500 mA h/g was obtained in further cycles. The MoS2 nanostructure evolution after initial discharge helped in extending the cycle life of assembled cells even at a high C rate. Density functional theory (DFT) calculation was performed to understand the structural stability of intermediate MoS3 and possible electrochemical reactions pertaining to Li+ insertion in MoS2 and S. Based on DFT studies, MoS3 undergoes stoichiometric decomposition to stable MoS2 and S. Furthermore, electrochemical analysis confirmed the redox activity of MoS2 and S at 1.3 and 1.8 V against Li/Li+, respectively.

16.
J Am Chem Soc ; 141(23): 9217-9224, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117641

RESUMO

Novel cyclodextrin (CD)-based amphiphilic poly(carboxylic acid)s that self-assemble into highly ordered smectic liquid crystalline mesophases were investigated as a novel class of protonic conductors. These structurally well-defined materials are synthesized from nontoxic and environment-friendly CDs, which possess a unique face-to-face pseudosymmetry. By taking advantage of such geometry, a series of flexible tetraethylene glycol groups terminated with a carboxylic acid functionality were introduced to the CD's secondary face, resulting in the formation of long-range 2D hydrogen-bond networks in the smectic mesophases over a wide temperature window. This new material was found to exhibit impressive proton conductivities in solid states, up to 1.4 × 10-2 S cm-1 at 70 °C and 95% humidity. This constitutes the first report of amphiphilic CD-based liquid crystals applied as proton conductive materials.

17.
ACS Appl Mater Interfaces ; 11(25): 22029-22050, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31144798

RESUMO

All-solid-state batteries (ASSBs) based on inorganic solid electrolytes promise improved safety, higher energy density, longer cycle life, and lower cost than conventional Li-ion batteries. However, their practical application is hampered by the high resistance arising at the solid-solid electrode-electrolyte interface. Although the exact mechanism of this interface resistance has not been fully understood, various chemical, electrochemical, and chemo-mechanical processes govern the charge transfer phenomenon at the interface. This paper reports the interfacial behavior of the lithium and the cathode in oxide and sulfide inorganic solid-electrolytes and how that affects the overall battery performance. An overview of the recent reports dealing with high resistance at the anodic and cathodic interfaces is presented and the scientific and engineering aspects of the approaches adopted to solve the issue are summarized.

18.
Chem Commun (Camb) ; 55(26): 3713-3716, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30854536

RESUMO

Perovskite-type Nd0.75Sr0.25Co0.8Fe0.2O3-δ (NSCF) has shown excellent oxygen reduction reaction (ORR) properties (an area specific polarization resistance of 0.1 Ω cm2 at 700 °C) as a composite cathode (30 wt% La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM)) with remarkable chemical stability under CO2. The mechanism for the ORR was established employing pO2 and temperature dependent studies.

19.
Inorg Chem ; 58(8): 4782-4791, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30920817

RESUMO

Electrical conductivity and electrochemical catalytic activity for H2 oxidation of Ti-based hollandite-type Ba1.33Ga2.67Ti5.33O16 (BGT), K1.33Ga1.33Ti6.67O16 (KGT), and K1.54Mg0.77Ti7.23O16 (KMT) were investigated, along with the chemical stability of KMT under H2 at elevated temperature. BGT, KGT, and KMT crystallized in a tetragonal structure with the space-group I4/ m. The electrical conductivity in H2 increases with increasing Ti content, and the highest total electrical conductivity of 2 S/cm at 800 °C in H2 was observed for KMT. KGT:Fe (1:1) + 20% LSGM + 30% porosity composite electrode showed the lowest area specific resistance of ca. 1.6 Ω cm2 at 800 °C for hydrogen oxidation reaction (HOR) under the open circuit condition. Moderate catalytic activity for HOR could be attributed to poor oxide ion conductivity and exclusion of potassium and hydrogen uptake in H2 at elevated temperature. Bond valence sum mismatch map calculation showed that the ionic transport happens along the 1D channel of c-axis in the hollandite oxides.

20.
Nanoscale Adv ; 1(10): 3807-3835, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132093

RESUMO

Electrolytes are one of the vital constituents of electrochemical energy storage devices and their physical and chemical properties play an important role in these devices' performance, including capacity, power density, rate performance, cyclability and safety. This article reviews the current state of understanding of the electrode-electrolyte interaction in supercapacitors and battery-supercapacitor hybrid devices. The article discusses factors that affect the overall performance of the devices such as the ionic conductivity, mobility, diffusion coefficient, radius of bare and hydrated spheres, ion solvation, viscosity, dielectric constant, electrochemical stability, thermal stability and dispersion interaction. The requirements needed to design better electrolytes and the challenges that still need to be addressed for building better supercapacitive devices for the competitive energy storage market have also been highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...