Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 19057, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154070

RESUMO

The present work deals with developing a method for revalorizing steel residues to create sunlight-active photocatalysts based on iron oxides. Commercial-grade steel leftovers are oxidized under different combinations of pH and temperature (50-90 °C and 3 ≥ pH ≤ 5) in a low energy-intensive setup. The material with the highest production efficiency (yield > 12%) and magnetic susceptibility (χm = 387 × 10-6 m3/kg) was further explored and modified by diffusion of M2+ (Zn and Co) ions within the structure of the oxide using a hydrothermal method to create ZnFe2O4, CoFe2O4 and combined Co-Zn ferrite. (Co-Zn)Fe2O4 displayed a bandgap of 2.02 eV and can be activated under sunlight irradiation. Electron microscopy studies show that (Co-Zn)Fe2O4 consists of particles with diameters between 400 and 700 nm, homogeneous size, even distribution, and good dispersibility. Application of the developed materials in the sunlight catalysis of black liquors from cellulose extraction resulted in a reduction of the Chemical Oxygen Demand (- 15% on average) and an enhancement in biodegradability (> 0.57 BOD/COD) after 180 min of reaction. Since the presented process employs direct solar light, it opens the possibility to large-scale water treatment and chemical upgrading applications.

2.
Molecules ; 28(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959751

RESUMO

A raspberry-like SiO2@TiO2 new material supported on functionalized graphene oxide was prepared to reduce titania's band gap value. The material was characterized through different analytical methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). The band gap value was studied via UV-Vis absorption spectra and determined through the Kubelka-Munk equation. A theoretical study was also carried out to analyze the interaction between the species.

3.
ACS Omega ; 8(8): 7459-7469, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873030

RESUMO

The present work demonstrates a simple and sustainable method for forming azo oligomers from low-value compounds such as nitroaniline. The reductive oligomerization of 4-nitroaniline was achieved via azo bonding using nanometric Fe3O4 spheres doped with metallic nanoparticles (Cu NPs, Ag NPs, and Au NPs), which were characterized by different analytical methods. The magnetic saturation (M s) of the samples showed that they are magnetically recoverable from aqueous environments. The effective reduction of nitroaniline followed pseudo-first-order kinetics, reaching a maximum conversion of about 97%. Fe3O4-Au is the best catalyst, its a reaction rate (k Fe3O4-Au = 0.416 mM L-1 min-1) is about 20 times higher than that of bare Fe3O4 (k Fe3O4 = 0.018 mM L-1 min-1). The formation of the two main products was determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS), evidencing the effective oligomerization of NA through N = N azo linkage. It is consistent with the total carbon balance and the structural analysis by density functional theory (DFT)-based total energy. The first product, a six-unit azo oligomer, was formed at the beginning of the reaction through a shorter, two-unit molecule. The nitroaniline reduction is controllable and thermodynamically viable, as shown in the computational studies.

4.
Dalton Trans ; 51(46): 17671-17687, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36342366

RESUMO

Since the interfacial binding strength and structural integrity have a strong influence on the active sites of nanocomposites, this study focused on exploring the structural and electronic properties at the interface between the implanted metal ion and host support. For this, nanocomposites of gold embedded in CeO2-ZrO2 and CeO2-Al2O3 matrices were fabricated, and their structural and morphological properties were investigated using ICP-OES, UV-vis, XRD, Raman, HRTEM, and high-resolution XPS studies and compared. From the results, it was found that the deposition of gold is highly favored over CeO2-ZrO2 (3.99 atomic %) than CeO2-Al2O3 (1.21 atomic %); however, the same amount of gold was used for the synthesis of both nanocomposites, as befits it. The HRTEM images of Au/CeO2-ZrO2 displayed well-organized yarn textured particles with less than 5 nm size, which lacks in Au/CeO2-Al2O3. The reason for this less systematized and less Au embedding in the presence of alumina in CeO2-Al2O3 was verified with the high-resolution XPS studies of both nanocomposites and an elevated binding energy due to the mobility of Au particles over CeO2-Al2O3 was observed, while for Au/CeO2-ZrO2, a very small binding energy shift of gold states (Au 4f5/2 0.39; Au 4f7/2 0.17 eV) and the CeO2-ZrO2 matrix that favored an increased intermolecular force between gold and the supporting host was observed. This agrees well with UV-vis electronic spectrum analysis, which revealed that the incorporation of gold nanoparticles narrowed the band gap more significantly in Au/CeO2-ZrO2 (4.2 eV) than Au/CeO2-Al2O3 (4.94 eV) suggesting the elevated electron transfer from the conduction band of CeO2-ZrO2 to Au interfaces. In addition, XRD and Raman studies of Au/CeO2-ZrO2 showed a pronounced phase transformation of Ce4+ to Ce3+ in the presence of homovalent Zr4+ ions with an increased structural disorder in CeO2 promoting the localized surface plasmon resonance (LSPR) in the lattice of CeO2-ZrO2, which was less detected in Au/CeO2-Al2O3 due to the interference of less-desired γ-Al2O3 phases. These characteristics of Au/CeO2-ZrO2 ensured its performance as a promised photocatalyst for thioanisole degradation without using any harmful oxidants, and its stability towards different irradiation conditions, such as visible, ultraviolet, and solar light.

5.
Analyst ; 146(24): 7653-7669, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34806723

RESUMO

Pharmaceutical effluents are a serious environmental issue, which require to be treated by a suitable technique; thus, the electrochemical process is actively considered as a viable method for the treatment. In this work, new carbon paste electrodes (CPEs) were fabricated by compressing gold and silver nanoparticles (NPs), namely, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs and then completely characterized by different analytical methods. The performance of the electrodes was studied after determining their surface area (×10-6 cm2) as 4.17, 5.05, 5.27, and 5.12, producing high anodic currents for K4[Fe(CN)6] compared to the commercial electrode. This agrees with the results of impedance study, where the electron transfer rate constants (kapp, ×10-3 cm s-1) were determined to be 28.7, 42.6, 41.0, and 101.4 for CPE, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively, through the Bode plot-phase shifts. This is consistent with the charge transfer resistance (RCT, Ω), resulting as 171 for CPE/Ag/Au NPs < 395 for CPE/Ag NPs < 427 for CPE/Au NPs and < 742 for CPE. Therefore, these electrodes were employed to detect trimethoprim (TMP) since metallic NPs contribute good crystallinity, stability, conduciveness, and surface plasmon resonance to the CPE, convalescing the sensitivity; comprehensively, they were applied for its detection in real water and human urine samples, and the limit of detection (LOD) was as low as 0.026, 0.032, and 0.026 µmol L-1 for CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively. In contrast, unmodified CPE was unable to detect TMP due to the lack of efficiency. The developed technique shows excellent electrochemical recovery of 92.3 and 97.1% in the urine sample. Density functional theory (DFT) was used to explain the impact of the metallic center in graphite through density of states (DOS).


Assuntos
Nanopartículas Metálicas , Eletrodos , Ouro , Humanos , Modelos Teóricos , Prata , Trimetoprima
6.
J Inorg Biochem ; 218: 111406, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773324

RESUMO

Generation of nitric oxide has been a great interest in cell biology as it involves a wide range of physiological functions including the blood pressure control; thus the exploitation of ruthenium chemistry has been motivated in biochemical and clinical points of view. Herein, the structural and electronic properties of ruthenium(II) complexes of 1,4,8,11-tetraazacyclotetradecane containing pyridyl, imidazole and benzimidazole (L1, L2, L3) were analyzed theoretically in the context of how spin multiplicity plays a crucial role influencing the NO release from the LRu-ONO moiety. The results show that ß-cleavage of nitrito in the complex motivates the release of NO as it depends highly on total spin multiplicity of metal ion altering significantly the geometrical parameters; particularly, a decrease of bond length of Ru-ONO is highly associated with an increase of RuO-NO bond distance that correlates with the decrease of the Ru-O-NO bond angle ultimately leading to the release of NO; apparently, the bending nature of Ru-O-NO defines its release from the complex. This is consistent with orbital energy (dx2-y2) where the stabilization of axial Ru-O bond in the complex was observed, and proved by molecular orbital studies. In the excitation of the complex (singlet to triplet or singlet to quintet), the NO release has been facilitated, agreeing with the Gibbs free energy data where a lower energy for NO release was obtained compared to other types of excitations. In the calculated electronic spectra, a visible broad band with relatively high intensity for [RuL1ONO]+ was observed, agreeing approximately with reported experimental results.


Assuntos
Alcanos/química , Complexos de Coordenação/química , Modelos Teóricos , Óxido Nítrico/metabolismo , Rutênio/química , Água/química , Cristalografia por Raios X
7.
Photochem Photobiol Sci ; 18(7): 1761-1772, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31111854

RESUMO

Biomolecules like cysteine and cytosine play a significant role in many physiological processes, and their unusual level in biological systems can lead to many diseases including cancer. Indeed, the need for selective detection of these moieties by a fluorescence probe is imperative. Thus, thiophene based Schiff N,N'-bis(thiophene-2-ylmethylene)thiophenemethane (BMTM) was synthesized and then characterized using several analytical techniques before converting it into organic nanoparticles (ONPs). Then, fluorescent organic inorganic nanohybrids (FONs) were obtained after decorating ONPs with AuNPs to yield BMTM-Au-ONPs (FONPs). The morphology of the particles, analyzed using a Transmission Electron Microscope (TEM), shows that AuNPs were embedded with low density organic matter (ONPs). FONPs were employed to recognize cysteine and cytosine simultaneously. No interference was observed from other moieties such as guanine, uracyl, NADH, NAD, ATP, and adenine during the detection. It means that the intensity of the fluorescence signal was significantly changed (enhanced for cytosine and quenched for cysteine). So, FONPs were used to detect cysteine and cytosine in real samples, like Saccharomyces cerevisiae cells. As expected, no considerable fluorescence signal for cysteine was observed, while for cytosine, strong fluorescence signals were detected in the cells. DFT was used to explain the interaction of FONPs with cysteine or cytosine.


Assuntos
Cisteína/análise , Citosina/análise , Ouro/química , Nanopartículas Metálicas/química , Tiofenos/química , Cisteína/metabolismo , Citosina/metabolismo , Teoria da Densidade Funcional , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Microscopia Confocal , Microscopia Eletrônica de Transmissão , NAD/química , Saccharomyces cerevisiae/metabolismo
8.
Food Chem ; 278: 523-532, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583407

RESUMO

We developed a technique that detects Al3+ in milk/bio-samples, and reversibly applied to recognize tetracycline (TC) in milk, enhancing the fluorescence intensity without interference from other cations (Cd2+, Ni2+, Co2+, Sr2+, Mg2+, Fe3+, K+, Sm3+, Ag+, Na+, Ba2+, Cr3+, Zn2+ and Mn2+); the limit of detection (LOD) is found to be 0.00022 mM with r2 = 0.9439. The detection of Al3+ is tested in milk as well as in living cells (Saccharomyces cerevisiae and Debaryomyces spp.) by TC or by its quantum dots. This is consistent with the molecular orbital, revealing that the lowering of the energy of HOMO (Highly Occupied Molecular Orbital) discourages the electron transfer from HOMO of fluorophore to HOMO of excited states of Al-complex that increases the fluorescent intensity. Interestingly, carbon dots (CDs) generated from TC also recognize Al3+ as its LOD is as low as to 0.00050 mM with r2 of 0.9404.


Assuntos
Alumínio/análise , Leite/química , Imagem Molecular/métodos , Pontos Quânticos/química , Tetraciclina/química , Alumínio/química , Animais , Limite de Detecção , Metais/química , Saccharomyces cerevisiae/química
9.
Chemosphere ; 213: 481-497, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30245225

RESUMO

In this paper, we report the combination of two metal oxides (TiO2ZnO) that allows mixed density of states to reduce band gap energy, facilitating the photo-oxidation of Congo red dye under visible light. For the oxidation, a possible mechanism is proposed after analyzing the intermediates by GC-MS, and it is consistent with Density Functional Theory (DFT). The nanohybrids were characterized comprehensibly by several analytical techniques such as X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). For the addition of ZnO to TiO2, a dominance of anatase phase was found rather than other phases (rutile or brookite). A broad band (∼550 nm) is observed in UV-Visible spectra for TiO2ZnO/Ag NPs nm because of Surface Plasmon properties of Ag NPs. The band gap energy was calculated for TiO2ZnO/Ag system, and then it has been further studied by DFT in order to show why the convergence of two semiconductors allows a mixed density of states, facilitating the reduction of the energy gap between occupied and unoccupied bands; ultimately, it improves the performance of catalysts under visible light. Significantly, the interaction of crystal planes (0 0 I) of TiO2 anatase and (0 0 1) of ZnO crucially plays as an important role for the reduction of energy band-gap. Additionally, TiO2ZnOAg NPs were used recognize Saccharomyces cerevisiae cells by con-focal fluorescence microscope, showing that it develops bright bio-images for the cells; while for TiO2 or ZnO or TiO2ZnO NPs, no fluorescent response was seen within the cells.


Assuntos
Vermelho Congo/química , Luz , Fotólise , Titânio/química , Catálise , Vermelho Congo/efeitos da radiação , Microscopia , Nanopartículas/química , Semicondutores , Análise Espectral , Óxido de Zinco/química
10.
Mol Divers ; 22(2): 269-280, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29532429

RESUMO

Structural and electronic properties of a series of 25 phosphonate derivatives were analyzed applying density functional theory, with the exchange-correlation functional PBEPBE in combination with the 6-311++G** basis set for all atoms. The chemical reactivity of these derivatives has been interpreted using quantum descriptors such as frontier molecular orbitals (HOMO, LUMO), Hirshfeld charges, molecular electrostatic potential, and the dual descriptor [[Formula: see text]]. These descriptors are directly related to experimental median lethal dose ([Formula: see text], expressed as its decimal logarithm [[Formula: see text]([Formula: see text]] through a multiple linear regression equation. The proposed model predicts the toxicity of phosphonates in function of the volume (V), the load of the most electronegative atom of the molecule (q), and the eigenvalue of the molecular orbital HOMO ([Formula: see text]. The obtained values in the internal validation of the model are: [Formula: see text]%, [Formula: see text]%, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]%. The toxicity of nine phosphonate derivatives used as test molecules was adequately predicted by the model. The theoretical results indicate that the oxygen atom of the O=P group plays an important role in the interaction mechanism between the phosphonate and the acetylcholinesterase enzyme, inhibiting the removal of the proton of the ser-200 residue by the his-440 residue.


Assuntos
Simulação por Computador , Organofosfonatos/química , Organofosfonatos/toxicidade , Relação Quantitativa Estrutura-Atividade , Elétrons , Dose Letal Mediana , Modelos Moleculares , Conformação Molecular
11.
J Mol Model ; 21(9): 224, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26252971

RESUMO

The ruthenium complex with (N,N,N-tris(benzimidazol-2yl-methyl)amine, L(1)) was prepared, and characterized. Fukui data were used to localize the reactive sites on the ligand. The structural and electronic properties of the complex were analyzed by DFT in different oxidation states in order to evaluate its oxidant properties for phenol oxidation. The results show that the hard Ru(IV) cation bonds preferentially with a hard base (Namine = amine nitrogen, or axial chloride ion), and soft Ru(II) with a soft base (Nbzim = benzimidazole nitrogen or axial triphenyl phosphine). Furthermore, the Jahn-Teller effect causes an elongation of the axial bond in the octahedral structure. The bonding nature and the orbital contribution to the electronic transitions of the complex were studied. The experimental UV-visible bands were interpreted by using TD-DFT studies. The complex oxidizes phenol to benzoquinone in the presence of H2O2 and the intermediate was detected by HPLC and (13)C NMR. A possible mechanism and rate law are proposed for the oxidation. The adduct formation of phenol with [Ru(O)L(1)](2+) or [Ru(OH)L(1)](+) is theoretically analyzed to show that [Ru(OH)L(1)-OPh](+) could produce the phenol radical.


Assuntos
Benzimidazóis/química , Complexos de Coordenação/química , Fenol/química , Rutênio/química , Cromatografia Líquida de Alta Pressão , Eletroquímica , Peróxido de Hidrogênio/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxirredução
12.
Molecules ; 20(4): 6002-21, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25853317

RESUMO

Organic nanoparticles (ONPs) of lipoic acid and its doped derivatives ONPs/Ag and ONPs/Au were prepared and characterized by UV-Visible, EDS, and TEM analysis. The antibacterial properties of the ONPs ONPs/Ag and ONPs/Au were tested against bacterial strains (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Salmonella typhi). Minimal Inhibitory Concentration (MIC) and bacterial growth inhibition tests show that ONPs/Ag are more effective in limiting bacterial growth than other NPs, particularly, for Gram positive than for Gram-negative ones. The order of bacterial cell growth inhibition was ONPs/Ag > ONPs > ONPs/Au. The morphology of the cell membrane for the treated bacteria was analyzed by SEM. The nature of bond formation of LA with Ag or Au was analyzed by molecular orbital and density of state (DOS) using DFT.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ouro , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Prata , Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ácido Tióctico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA