Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 18(19): 3980-91, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19735449

RESUMO

Assessing how genes flow across populations is a key component of conservation genetics. Gene flow in a natural population depends on ecological traits and the local environment, whereas for a livestock population, gene flow is driven by human activities. Spatial organization, relationships between farmers and their husbandry practices will define the farmer's network and so determine farmer connectivity. It is thus assumed that farmer connectivity will affect the genetic structure of their livestock. To test this hypothesis, goats reared by four different ethnic groups in a Vietnamese province were genotyped using 16 microsatellites. A Bayesian approach and spatial multivariate analysis (spatial principal component analysis, sPCA) were used to identify subpopulations and spatial organization. Ethnic group frequencies, husbandry practices and altitude were used to create cost maps that were implemented in a least-cost path approach. Genetic diversity in the Vietnamese goat population was low (0.508) compared to other local Asian breeds. Using a Bayesian approach, three clusters were identified. sPCA confirmed these three clusters and also that the genetic structure showed a significant spatial pattern. The least-cost path analysis showed that genetic differentiation was significantly correlated (0.131-0.207) to ethnic frequencies and husbandry practices. In brief, the spatial pattern observed in the goat population was the result of complex gene flow governed by the spatial distribution of ethnic groups, ethnicity and husbandry practices. In this study, we clearly linked the livestock genetic pattern to farmer connectivity and showed the importance of taking into account spatial information in genetic studies.


Assuntos
Animais Domésticos/genética , Cruzamento , Fluxo Gênico , Genética Populacional , Cabras/genética , Criação de Animais Domésticos , Animais , Animais Domésticos/classificação , Análise por Conglomerados , Genótipo , Cabras/classificação , Repetições de Microssatélites , Análise Multivariada , Análise de Componente Principal , Análise de Sequência de DNA , Vietnã
2.
BMC Genet ; 10: 1, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19133138

RESUMO

UNLABELLED: Previous studies suggested that multiple domestication events in South and South-East Asia (Yunnan and surrounding areas) and India have led to the genesis of modern domestic chickens. Ha Giang province is a northern Vietnamese region, where local chickens, such as the H'mong breed, and wild junglefowl coexist. The assumption was made that hybridisation between wild junglefowl and Ha Giang chickens may have occurred and led to the high genetic diversity previously observed. The objectives of this study were i) to clarify the genetic structure of the chicken population within the Ha Giang province and ii) to give evidence of admixture with G. gallus. A large survey of the molecular polymorphism for 18 microsatellite markers was conducted on 1082 chickens from 30 communes of the Ha Giang province (HG chickens). This dataset was combined with a previous dataset of Asian breeds, commercial lines and samples of Red junglefowl from Thailand and Vietnam (Ha Noï). Measurements of genetic diversity were estimated both within-population and between populations, and a step-by-step Bayesian approach was performed on the global data set. RESULTS: The highest value for expected heterozygosity (> 0.60) was found in HG chickens and in the wild junglefowl populations from Thailand. HG chickens exhibited the highest allelic richness (mean A = 2.9). No significant genetic subdivisions of the chicken population within the Ha Giang province were found. As compared to other breeds, HG chickens clustered with wild populations. Furthermore, the neighbornet tree and the Bayesian clustering analysis showed that chickens from 4 communes were closely related to the wild ones and showed an admixture pattern. CONCLUSION: In the absence of any population structuring within the province, the H'mong chicken, identified from its black phenotype, shared a common gene pool with other chickens from the Ha Giang population. The large number of alleles shared exclusively between Ha Giang chickens and junglefowl, as well as the results of a Bayesian clustering analysis, suggest that gene flow has been taking place from junglefowl to Ha Giang chickens.


Assuntos
Galinhas/genética , Evolução Molecular , Fluxo Gênico , Genética Populacional , Animais , Teorema de Bayes , Análise por Conglomerados , Frequência do Gene , Variação Genética , Repetições de Microssatélites , Fenótipo , Polimorfismo Genético , Tailândia , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...