Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746361

RESUMO

RATIONALE: Asthma is a chronic inflammatory disease of the airways that involves crosstalk between myeloid-derived regulatory cells (MDRCs) and CD4+ T cells. Although small extracellular vesicles (sEVs) are known to mediate cell-cell communication, the role of sEV signaling via mitochondria in perpetuating asthmatic airway inflammation is unknown. OBJECTIVES: We investigated the effects of MDRC-derived exosomes on dysregulated T cell responses in asthmatics. METHODS: Small extracellular vesicles isolated from bronchoalveolar lavage fluid or airway MDRCs of mild to moderate asthmatics or healthy controls were co-cultured with autologous peripheral and airway CD4+ T lymphocytes. sEV internalization, sEV-mediated transfer of mitochondria targeted GFP to T cells, sEV mitochondrial signaling, and subsequent activation, proliferation and polarization of CD4+ T lymphocytes to Th1, Th2 and Th17 subsets were assessed. MEASUREMENTS AND MAIN RESULTS: Airway MDRC-derived sEVs from asthmatics mediated T cell receptor engagement and transfer of mitochondria that induced antigen-specific activation and polarization into Th17 and Th2 cells, drivers of chronic airway inflammation in asthma. CD4+ T cells internalized sEVs containing mitochondria predominantly by membrane fusion, and blocking mitochondrial oxidant signaling in MDRC-derived exosomes mitigated T cell activation. Reactive oxygen species-mediated signaling that elicited T cell activation in asthmatics was sEV-dependent. A Drp1-dependent mitochondrial fission in pro-inflammatory MDRCs promoted mitochondrial packaging within sEVs, which then co-localized with the polarized actin cytoskeleton and mitochondrial networks in the organized immune synapse of recipient T cells. CONCLUSIONS: Our studies indicate a previously unrecognized role for mitochondrial fission and exosomal mitochondrial transfer in dysregulated T cell activation and Th cell differentiation in asthma which could constitute a novel therapeutic target.

3.
J Biol Chem ; 299(8): 105027, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423298

RESUMO

Metabolism controls cellular phenotype and fate. In this report, we demonstrate that nicotinamide N-methyltransferase (NNMT), a metabolic enzyme that regulates developmental stem cell transitions and tumor progression, is highly expressed in human idiopathic pulmonary fibrosis (IPF) lungs, and is induced by the pro-fibrotic cytokine, transforming growth factor-ß1 (TGF-ß1) in lung fibroblasts. NNMT silencing reduces the expression of extracellular matrix proteins, both constitutively and in response to TGF-ß1. Furthermore, NNMT controls the phenotypic transition from homeostatic, pro-regenerative lipofibroblasts to pro-fibrotic myofibroblasts. This effect of NNMT is mediated, in part, by the downregulation of lipogenic transcription factors, TCF21 and PPARγ, and the induction of a less proliferative but more differentiated myofibroblast phenotype. NNMT confers an apoptosis-resistant phenotype to myofibroblasts that is associated with the downregulation of pro-apoptotic members of the Bcl-2 family, including Bim and PUMA. Together, these studies indicate a critical role for NNMT in the metabolic reprogramming of fibroblasts to a pro-fibrotic and apoptosis-resistant phenotype and support the concept that targeting this enzyme may promote regenerative responses in chronic fibrotic disorders such as IPF.


Assuntos
Miofibroblastos , Nicotinamida N-Metiltransferase , Humanos , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Miofibroblastos/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37463440

RESUMO

Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Recém-Nascido , Humanos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Fibrose , Regeneração , Mesoderma/patologia , Células Epiteliais/patologia
6.
Am J Respir Cell Mol Biol ; 68(6): 625-637, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36848480

RESUMO

In idiopathic pulmonary fibrosis (IPF), the normal delicate lung architecture is replaced with rigid extracellular matrix (ECM) as a result of the accumulation of activated myofibroblasts and excessive deposition of ECM. Lamins have a role in fostering mechanosignaling from the ECM to the nucleus. Although there is a growing number of studies on lamins and associated diseases, there are no prior reports linking aberrations in lamins with pulmonary fibrosis. Here, we discovered, through analysis of RNA sequencing data, a novel isoform of lamin A/C that is more highly expressed in IPF compared with control lung. This novel LMNA (lamin A/C) splice variant includes retained introns 10 and 11 and exons 11 and 12 as documented by rapid amplification of cDNA ends. We found that this novel isoform is induced by stiff ECM. To better clarify the specific effects of this novel isoform of lamin A/C and how it may contribute to the pathogenesis of IPF, we transduced the lamin transcript into primary lung fibroblasts and alveolar epithelial cells and found that it impacts several biological effects, including cell proliferation, senescence, cell contraction, and the transition of fibroblasts to myofibroblasts. We also observed that type II epithelial cells and myofibroblasts in the IPF lung exhibited wrinkled nuclei, and this is notable because this has not been previously described and is consistent with laminopathy-mediated cellular effects.


Assuntos
Fibrose Pulmonar Idiopática , Lamina Tipo A , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Pulmão/patologia , Fibrose Pulmonar Idiopática/patologia , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
7.
J Cell Mol Med ; 27(4): 471-481, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658776

RESUMO

Fibrosis describes a dysregulated tissue remodelling response to persistent cellular injury and is the final pathological consequence of many chronic diseases that affect the liver, kidney and lung. Nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) enzymes produce reactive oxygen species (ROS) as their primary function. ROS derived from NOX1 and NOX4 are key mediators of liver, kidney and lung fibrosis. Setanaxib (GKT137831) is a first-in-class, dual inhibitor of NOX1/4 and is the first NOX inhibitor to progress to clinical trial investigation. The anti-fibrotic effects of setanaxib in liver, kidney and lung fibrosis are supported by multiple lines of pre-clinical evidence. However, despite advances in our understanding, the precise roles of NOX1/4 in fibrosis require further investigation. Additionally, there is a translational gap between the pre-clinical observations of setanaxib to date and the applicability of these to human patients within a clinical setting. This narrative review critically examines the role of NOX1/4 in liver, kidney and lung fibrosis, alongside the available evidence investigating setanaxib as a therapeutic agent in pre-clinical models of disease. We discuss the potential clinical translatability of this pre-clinical evidence, which provides rationale to explore NOX1/4 inhibition by setanaxib across various fibrotic pathologies in clinical trials involving human patients.


Assuntos
Fibrose Pulmonar , Humanos , NADPH Oxidase 1 , Espécies Reativas de Oxigênio , Fibrose Pulmonar/patologia , Células Estreladas do Fígado , Fígado/patologia , NADPH Oxidases , Rim/patologia , NADPH Oxidase 4
10.
Clin Sci (Lond) ; 136(16): 1229-1240, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043396

RESUMO

Fibrosis involving the lung may occur in many settings, including in association with known environmental agents, connective tissue diseases, and exposure to drugs or radiation therapy. The most common form is referred to as 'idiopathic' since a causal agent or specific association has not been determined; the strongest risk factor for idiopathic pulmonary fibrosis is aging. Emerging studies indicate that targeting certain components of aging biology may be effective in mitigating age-associated fibrosis. While transforming growth factor-ß1 (TGF-ß1) is a central mediator of fibrosis in almost all contexts, and across multiple organs, it is not feasible to target this canonical pathway at the ligand-receptor level due to the pleiotropic nature of its actions; importantly, its homeostatic roles as a tumor-suppressor and immune-modulator make this an imprudent strategy. However, defining targets downstream of its receptor(s) that mediate fibrogenesis, while relatively dispenable for tumor- and immune-suppressive functions may aid in developing safer and more effective therapies. In this review, we explore molecular targets that, although TGF-ß1 induced/activated, may be relatively more selective in mediating tissue fibrosis. Additionally, we explore epigenetic mechanisms with global effects on the fibrogenic process, as well as metabolic pathways that regulate aging and fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Fibroblastos/metabolismo , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
Aging Cell ; 21(9): e13674, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934931

RESUMO

Mitochondrial dysfunction has been associated with age-related diseases, including idiopathic pulmonary fibrosis (IPF). We provide evidence that implicates chronic elevation of the mitochondrial anion carrier protein, uncoupling protein-2 (UCP2), in increased generation of reactive oxygen species, altered redox state and cellular bioenergetics, impaired fatty acid oxidation, and induction of myofibroblast senescence. This pro-oxidant senescence reprogramming occurs in concert with conventional actions of UCP2 as an uncoupler of oxidative phosphorylation with dissipation of the mitochondrial membrane potential. UCP2 is highly expressed in human IPF lung myofibroblasts and in aged fibroblasts. In an aging murine model of lung fibrosis, the in vivo silencing of UCP2 induces fibrosis regression. These studies indicate a pro-fibrotic function of UCP2 in chronic lung disease and support its therapeutic targeting in age-related diseases associated with impaired tissue regeneration and organ fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Proteína Desacopladora 2 , Idoso , Animais , Fibroblastos/metabolismo , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos , Miofibroblastos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
12.
Bio Protoc ; 12(11): e4429, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35799911

RESUMO

Reactive oxygen species are ubiquitous in nature, and function as signalling molecules in biological systems; they may also contribute to oxidative stress in several pathobiological disease states. In this report, we describe a simple, reliable, sensitive, and specific assay for the detection and quantitation of hydrogen peroxide (H 2 O 2 ) release by living cells, organoids, or tissues. Furthermore, the low cost of reagents required for this assay makes it inexpensive relative to commercial kits. The high sensitivity and specificity are based on the ability of H 2 O 2 to react with heme peroxidases and convert para-substituted phenolic compounds to fluorescent dimers. Graphical abstract.

14.
Am J Respir Crit Care Med ; 206(4): 459-475, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35687485

RESUMO

Rationale: A prevailing paradigm recognizes idiopathic pulmonary fibrosis (IPF) originating from various alveolar epithelial cell (AEC) injuries, and there is a growing appreciation of AEC aging as a key driver of the pathogenesis. Despite this progress, it is incompletely understood what main factor(s) contribute to the worsened alveolar epithelial aging in lung fibrosis. It remains a challenge how to dampen AEC aging and thereby mitigate the disease progression. Objectives: To determine the role of AEC CD38 (cluster of differentiation 38) in promoting cellular aging and lung fibrosis. Methods: We used single-cell RNA sequencing, real-time PCR, flow cytometry, and Western blotting. Measurements and Main Results: We discovered a pivotal role of CD38, a cardinal nicotinamide adenine dinucleotide (NAD) hydrolase, in AEC aging and its promotion of lung fibrosis. We found increased CD38 expression in IPF lungs that inversely correlated with the lung functions of patients. CD38 was primarily located in the AECs of human lung parenchyma and was markedly induced in IPF AECs. Similarly, CD38 expression was elevated in the AECs of fibrotic lungs of young mice and further augmented in those of old mice, which was in accordance with a worsened AEC aging phenotype and an aggravated lung fibrosis in the old animals. Mechanistically, we found that CD38 elevation downregulated intracellular NAD, which likely led to the aging promoting impairment of the NAD-dependent cellular and molecular activities. Furthermore, we demonstrated that genetic and pharmacological inactivation of CD38 improved these NAD dependent events and ameliorated bleomycin-induced lung fibrosis. Conclusions: Our study suggests targeting alveolar CD38 as a novel and effective therapeutic strategy to treat this pathology.


Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar Idiopática , Envelhecimento , Células Epiteliais Alveolares/metabolismo , Animais , Bleomicina , Senescência Celular/genética , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , Camundongos , NAD/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L341-L354, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762622

RESUMO

The 9th biennial conference titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology. The virtual workshop included active discussion on state-of-the-art methods relating to the core features of the 2021 conference, including in situ proteomics, lung-on-chip, induced pluripotent stem cell (iPSC)-airway differentiation, and light sheet microscopy. The conference concluded with an open discussion to suggest funding priorities and recommendations for future research directions in basic and translational lung biology.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Bioengenharia , Biologia , COVID-19/terapia , Humanos , Pulmão , Pandemias
16.
Sci Rep ; 12(1): 3080, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197532

RESUMO

Fibrosis is a leading cause of morbidity and mortality worldwide. Although fibrosis may involve different organ systems, transforming growth factor-ß (TGFß) has been established as a master regulator of fibrosis across organs. Pirfenidone and Nintedanib are the only currently-approved drugs to treat fibrosis, specifically idiopathic pulmonary fibrosis, but their mechanisms of action remain poorly understood. To identify novel drug targets and uncover potential mechanisms by which these drugs attenuate fibrosis, we performed an integrative 'omics analysis of transcriptomic and proteomic responses to TGFß1-stimulated lung fibroblasts. Significant findings were annotated as associated with pirfenidone and nintedanib treatment in silico via Coremine. Integrative 'omics identified a co-expressed transcriptomic and proteomic module significantly correlated with TGFß1 treatment that was enriched (FDR-p = 0.04) with genes associated with pirfenidone and nintedanib treatment. While a subset of genes in this module have been implicated in fibrogenesis, several novel TGFß1 signaling targets were identified. Specifically, four genes (BASP1, HSD17B6, CDH11, and TNS1) have been associated with pirfenidone, while five genes (CLINT1, CADM1, MTDH, SYDE1, and MCTS1) have been associated with nintedanib, and MYDGF has been implicated with treatment using both drugs. Using the Clue Drug Repurposing Hub, succinic acid was highlighted as a metabolite regulated by the protein encoded by HSD17B6. This study provides new insights into the anti-fibrotic actions of pirfenidone and nintedanib and identifies novel targets for future mechanistic studies.


Assuntos
Antifibróticos/farmacologia , Biologia Computacional/métodos , Proteínas da Matriz Extracelular/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Indóis/farmacologia , Piridonas/farmacologia , Fator de Crescimento Transformador beta/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antifibróticos/uso terapêutico , Caderinas/genética , Caderinas/metabolismo , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo , Feminino , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis/uso terapêutico , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Piridonas/uso terapêutico , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Tensinas/genética , Tensinas/metabolismo
17.
Theranostics ; 12(2): 530-541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976199

RESUMO

Histone H4 lysine16 acetylation (H4K16Ac) modulates chromatin structure by serving as a switch from a repressive to a transcriptionally active state. This euchromatin mark is associated with active transcription. In this study, we investigated the effects of H4K16Ac on the expression of pro-fibrotic genes in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and in an aging murine model of lung fibrosis. Methods: The lung tissues and fibroblasts from human IPF/non-IPF donors and from aged mice with/without bleomycin induced lung fibrosis were used in this study. The H4K16Ac levels were examined by immunohistochemistry or western blots. RNA silencing of H4K16Ac acetyltransferase Mof was used to reduce H4K16Ac levels in IPF fibroblasts. The effects of reduced H4K16Ac on pro-fibrotic gene expression were examined by western blots and real-time PCR. The association of H4K16Ac with these genes' promoter region were evaluated by ChIP assays. The gene expression profile in siRNA Mof transfected IPF cells were determined by RNA-Seq. The impact of H4K16Ac levels on lung fibrosis was evaluated in an aging murine model. Results: Aged mice with bleomycin induced lung fibrosis showed increased H4K16Ac levels. Human lung fibroblasts with siRNA Mof silencing demonstrated reduced H4K16Ac, and significantly down-regulated profibrotic genes, such as α-smooth muscle actin (α-SMA), collagen I, Nox4, and survivin. ChIP assays confirmed the associations of these pro-fibrotic genes' promoter region with H4K16Ac, while in siRNA Mof transfected cells the promoter/H4K16Ac associations were depleted. RNA-seq data demonstrated that Mof knockdown altered gene expression and cellular pathways, including cell damage and repair. In the aging mice model of persistent lung fibrosis, 18-month old mice given intra-nasal siRNA Mof from week 3 to 6 following bleomycin injury showed improved lung architecture, decreased total hydroxyproline content and lower levels of H4K16Ac. Conclusions: These results indicate a critical epigenetic regulatory role for histone H4K16Ac in the pathogenesis of pulmonary fibrosis, which will aid in the development of novel therapeutic strategies for age-related diseases such as IPF.


Assuntos
Envelhecimento/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/genética , Envelhecimento/metabolismo , Animais , Bleomicina , Células Cultivadas , Modelos Animais de Doenças , Epigênese Genética , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Histonas/fisiologia , Humanos , Pulmão/patologia , Lisina/metabolismo , Camundongos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/terapia , Interferência de RNA , RNA-Seq
18.
medRxiv ; 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518842

RESUMO

Multi-specific and long-lasting T cell immunity have been recognized as indicators for long term protection against pathogens including the novel coronavirus SARS-CoV-2, the causative agent of the COVID-19 pandemic. Functional significance of peripheral memory T cells in individuals recovering from COVID-19 (COVID-19 + ) are beginning to be appreciated; but little is known about lung resident memory T cells (lung TRM) in SARS-CoV-2 infection. Here, we utilize a perfused three dimensional (3D) human lung tissue model and identify pre-existing local T cell immunity against SARS-CoV-2 proteins in lung tissues. We report ex vivo maintenance of functional multi-specific IFN-γ secreting lung TRM in COVID-19 + and their induction in lung tissues of vaccinated COVID-19 + . Importantly, we identify SARS-CoV-2 peptide-responding B cells and IgA + plasma cells in lung tissues of COVID-19 + in ex vivo 3D-tissue models. Our study highlights the importance of balanced and local anti-viral immune response in the lung with persistent induction of TRM and IgA + plasma cells for future protection against SARS-CoV-2 infection. Further, our data suggest that inclusion of multiple viral antigens in vaccine approaches may broaden the functional profile of memory T cells to combat the severity of coronavirus infection.

19.
Front Immunol ; 12: 747780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867973

RESUMO

Regulatory B cells (Breg) are IL-10 producing subsets of B cells that contribute to immunosuppression in the tumor microenvironment (TME). Breg are elevated in patients with lung cancer; however, the mechanisms underlying Breg development and their function in lung cancer have not been adequately elucidated. Herein, we report a novel role for Indoleamine 2, 3- dioxygenase (IDO), a metabolic enzyme that degrades tryptophan (Trp) and the Trp metabolite L-kynurenine (L-Kyn) in the regulation of Breg differentiation in the lung TME. Using a syngeneic mouse model of lung cancer, we report that Breg frequencies significantly increased during tumor progression in the lung TME and secondary lymphoid organs, while Breg were reduced in tumor-bearing IDO deficient mice (IDO-/-). Trp metabolite L-Kyn promoted Breg differentiation in-vitro in an aryl hydrocarbon receptor (AhR), toll-like receptor-4-myeloid differentiation primary response 88, (TLR4-MyD88) dependent manner. Importantly, using mouse models with conditional deletion of IDO in myeloid-lineage cells, we identified a significant role for immunosuppressive myeloid-derived suppressor cell (MDSC)-associated IDO in modulating in-vivo and ex-vivo differentiation of Breg. Our studies thus identify Trp metabolism as a therapeutic target to modulate regulatory B cell function during lung cancer progression.


Assuntos
Linfócitos B Reguladores/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Diferenciação Celular/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Microambiente Tumoral/imunologia , Animais , Carcinoma Pulmonar de Lewis/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo
20.
Elife ; 102021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528872

RESUMO

Multicellular organisms maintain structure and function of tissues/organs through emergent, self-organizing behavior. In this report, we demonstrate a critical role for lung mesenchymal stromal cell (L-MSC) aging in determining the capacity to form three-dimensional organoids or 'alveolospheres' with type 2 alveolar epithelial cells (AEC2s). In contrast to L-MSCs from aged mice, young L-MSCs support the efficient formation of alveolospheres when co-cultured with young or aged AEC2s. Aged L-MSCs demonstrated features of cellular senescence, altered bioenergetics, and a senescence-associated secretory profile (SASP). The reactive oxygen species generating enzyme, NADPH oxidase 4 (Nox4), was highly activated in aged L-MSCs and Nox4 downregulation was sufficient to, at least partially, reverse this age-related energy deficit, while restoring the self-organizing capacity of alveolospheres. Together, these data indicate a critical role for cellular bioenergetics and redox homeostasis in an organoid model of self-organization and support the concept of thermodynamic entropy in aging biology.


Many tissues in the body are capable of regenerating by replacing defective or worn-out cells with new ones. This process relies heavily on stem cells, which are precursor cells that lack a set role in the body and can develop into different types of cells under the right conditions. Tissues often have their own pool of stem cells that they use to replenish damaged cells. But as we age, this regeneration process becomes less effective. Many of our organs, such as the lungs, are lined with epithelial cells. These cells form a protective barrier, controlling what substances get in and out of the tissue. Alveoli are parts of the lungs that allow oxygen and carbon dioxide to move between the blood and the air in the lungs. And alveoli rely on an effective epithelial cell lining to work properly. To replenish these epithelial cells, alveoli have pockets, in which a type of epithelial cell, known as AEC2, lives. These cells can serve as stem cells, developing into a different type of cell under the right conditions. To work properly, AEC2 cells require close interactions with another type of cell called L-MSC, which supports the maintenance of other cells and also has the ability to differentiate into several other cell types. Both cell types can be found close together in these stem cell pockets. So far, it has been unclear how aging affects how these cells work together to replenish the epithelial lining of the alveoli. To investigate, Chanda et al. probed AEC2s and L-MSCs in the alveoli of young and old mice. The researchers collected both cell types from young (2-3 months) and aged (22-24 months) mice. Various combinations of these cells were grown to form 3D structures, mimicking how the cells grow in the lungs. Young L-MSCs formed normal 3D structures with both young and aged AEC2 cells. But aged L-MSCs developed abnormal, loose structures with AEC2 cells (both young and old cells). Aged L-MSCs were found to have higher levels of an enzyme (called Nox4) that produces oxidants and other 'pro-aging' factors, compared to young L-MSCs. However, reducing Nox4 levels in aged L-MSCs allowed these cells to form normal 3D structures with young AEC2 cells, but not aged AEC2 cells. These findings highlight the varying effects specific stem cells have, and how their behaviour is affected by pro-aging factors. Moreover, the pro-aging enzyme Nox4 shows potential as a therapeutic target ­ downregulating its activity may reverse critical effects of aging in cells.


Assuntos
Células Epiteliais Alveolares , Senescência Celular/fisiologia , Células-Tronco Mesenquimais , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/fisiologia , Animais , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Organoides/citologia , Organoides/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...