Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genomics Inform ; 22(1): 12, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085978

RESUMO

Over hundreds of years, cats have been domesticated and selectively bred, resulting in numerous pedigreed breeds expedited by recent cat shows and breeding associations. Concerns have been raised about the limited breeding options and the genetic implications of inbreeding, indicating challenges in maintaining genetic diversity and accurate identification in purebred cats. In this study, genetic variability and structure were examined in 5 Thai domestic cat breeds using 15 microsatellite markers and mitochondrial DNA (mtDNA) D-loop sequencing. In total, 184 samples representing the Wichien Maat (WCM), Suphalak (SL), Khao-Manee (KM), Korat (KR), and Konja (KJ) breeds were analyzed. High genetic diversity (Ho and He > 0.5) was observed in all breeds, and mtDNA analysis revealed two primary haplogroups (A and B) that were shared among all domestic cat breeds in Thailand and globally. However, minor differences were observed between Thai domestic cat breeds based on clustering analyses, in which a distinct genetic structure was observed in the WCM breed. This suggests that allele fixation for distinctive morphological traits has occurred in Thai domestic cat breeds that emerged in isolated regions with shared racial origins. Analysis of relationships among individuals within the breed revealed high identification efficiency in Thai domestic cat breeds (P(ID)sibs < 10-4). Additionally, diverse and effective individual identification can be ensured by optimizing marker efficiency by using only nine loci. This comprehensive genetic characterization provides valuable insights into conservation strategies and breeding practices for Thai domestic cat breeds.

2.
Biochem Genet ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864964

RESUMO

Originating in Thailand, the Thai Ridgeback dog is known for its unique fur ridge that grows in the opposite direction along its back. Selective breeding and a limited populations in Thailand have led to significant close inbreeding among related individuals. The current Thai Ridgeback population is assumed to have experienced a loss of genetic diversity and bottleneck events. Furthermore, studies on the genetic diversity and structure of Thai Ridgeback dogs are limited. Therefore, the aim of this study was to assess the genetic diversity in Thai Ridgeback dogs. Microsatellite genotyping and mitochondrial DNA D-loop sequences were used to assess genetic diversity in 105 Thai Ridgeback dogs from various farms throughout Thailand. Significant genetic diversity and minimal inbreeding were observed in the current Thai Ridgeback population. Signs of bottlenecks were not observed because the exchange of genetic material among Thai Ridgeback owners effectively preserved the genetic diversity. Moreover, the genetic parameters in this study supported owner-to-owner exchanges animals for mating programs. To sustain the genetic diversity of Thai Ridgeback dogs, the use of genetic parameters to manage genetic closeness while preserving breed characteristics is essential. These data are crucial for ensuring demographic stability, which is pivotal for long-term conservation and effective population management.

3.
PLoS One ; 19(5): e0302584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709757

RESUMO

The North African catfish (Clarias gariepinus) is a significant species in aquaculture, which is crucial for ensuring food and nutrition security. Their high adaptability to diverse environments has led to an increase in the number of farms that are available for their production. However, long-term closed breeding adversely affects their reproductive performance, leading to a decrease in production efficiency. This is possibly caused by inbreeding depression. To investigate the root cause of this issue, the genetic diversity of captive North African catfish populations was assessed in this study. Microsatellite genotyping and mitochondrial DNA D-loop sequencing were applied to 136 catfish specimens, collected from three populations captured for breeding in Thailand. Interestingly, extremely low inbreeding coefficients were obtained within each population, and distinct genetic diversity was observed among the three populations, indicating that their genetic origins are markedly different. This suggests that outbreeding depression by genetic admixture among currently captured populations of different origins may account for the low productivity of the North African catfish in Thailand. Genetic improvement of the North African catfish populations is required by introducing new populations whose origins are clearly known. This strategy should be systematically integrated into breeding programs to establish an ideal founder stock for selective breeding.


Assuntos
Peixes-Gato , DNA Mitocondrial , Variação Genética , Endogamia , Repetições de Microssatélites , Animais , Aquicultura , Peixes-Gato/genética , DNA Mitocondrial/genética , Genótipo , Repetições de Microssatélites/genética , Tailândia
4.
Genes Genomics ; 46(6): 659-669, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38687435

RESUMO

BACKGROUND: The Bangkaew dog is an indigenous dog breed in the Phitsanulok province of Thailand. This breed is recognized by the Fédération Cynologique Internationale (FCI), a global canine organization. The unique traits of the Bangkaew breed lead to purebred selection for breeding, while only their traits and pedigree from parental history are recorded. Determination of the risk of inbreeding depression and the origin of unknown DNA profiles is essential due to the challenges in predicting puppy characteristics, which are crucial for breed management and conservation. OBJECTIVE: This study aimed to emphasize that current allelic frequency data for the Bangkaew dog breed must be considered for precise individual identification. METHODS: Approximately 82 Bangkaew dogs from various Thai localities were studied using 15 microsatellite markers for genotypic monitoring and individual identification. Maternal genetic inheritance was assessed via mtDNA D-loop analysis. RESULTS: The results revealed high genetic diversity in the Bangkaew breed, indicating low potential for inbreeding. We also found that using a 15 loci microsatellite panel was effective for the identification of Bangkaew dogs. The optimized 10 loci microsatellite genotyping panel developed in this study presents improved identification testing efficiency, promoting both time- and cost-effectiveness. CONCLUSION: Analysis of microsatellite DNA markers in Bangkaew dogs using an optimized panel of 10 loci selected from 15 loci effectively facilitated individual identification. This approach not only enhances time and cost efficiency, but also provides accurate allelic frequency estimates, which are crucial for the realistic evaluation of DNA evidence.


Assuntos
Repetições de Microssatélites , Animais , Cães/genética , Repetições de Microssatélites/genética , Tailândia , Cruzamento , DNA Mitocondrial/genética , Linhagem , Frequência do Gene/genética , Feminino , Genótipo , Variação Genética/genética , Técnicas de Genotipagem/métodos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA