Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502481

RESUMO

The median-effect principle proposed by Chou and Talalay is the most effective approach to parameterize interactions between several agents in combination. However, this method cannot be used to evaluate the effectiveness of equimolar drug combinations, which are comparative references for dual-targeting molecular design. Here, using data acquired through the development of "combi-molecules" blocking two kinases (e.g., EGFR-c-Src and EGFR-c-Met), we established potency indices for equimolar and dual-targeted inhibitors. If the fold difference (κ) between the IC50 of the two individual kinase inhibitors was >6, the IC50 of their equimolar combination resembled that of the more potent inhibitor. Hence, the "combi-targeting" of the two kinases was considered "imbalanced" and the combination ineffective. However, if κ ≤ 6, the IC50 of the combination fell below that of each individual drug and the combi-targeting was considered "balanced" and the combination effective. We also showed that combi-molecules should be compared with equimolar combinations only under balanced conditions and propose a new parameter Ω for validating their effectiveness. A multi-targeted drug is effective if Ω < 1, where Ω is defined as the IC50 of the drug divided by that of the corresponding equimolar combination. Our study provides a methodology to determine the in vitro potency of equimolar two-drug combinations as well as combi-/hybrid molecules inhibiting two different kinase targets.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistemas de Liberação de Medicamentos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Células A549 , Animais , Cricetulus , Feminino , Humanos , Masculino , Camundongos , Células NIH 3T3 , Neoplasias/metabolismo , Células PC-3
2.
Eur J Pharm Biopharm ; 139: 253-261, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30981947

RESUMO

Resiquimod (R848), a member of the imidazoquinoline family, is a Toll-like receptor 7/8 agonist with high potency for cancer immunotherapy. However, tolerance induction and adverse effects limit its development as a drug. Encapsulation in a polymer matrix can circumvent these limitations, as shown in our formerly published approach where R848 was loaded into polylactic acid (PLA)-based nanoparticles (NP). Although the results were encouraging, low rates of encapsulation and rapid release of the drug were observed. In this study, we present a new strategy using mixed NP from modified linear PLA in order to improve the encapsulation and modulate the release profile of R848. Modified PLA polymers were designed and synthesized by microwave-assisted ring opening polymerization of d,l-lactide, using polyethylene glycol as initiator to increase the hydrophilic properties of the polymer or linear saturated aliphatic chains (C8 or C20) to increase the affinity with hydrophobic R848. NP were prepared by solvent evaporation method, leading to particles of 205-288 nm loaded with either R848 or DiO as a tracking agent. The release profile showed longer retention of R848 at both neutral and acidic pH for NP from grafted polymers. Upon exposure to phagocytic immune cells, NP were actively taken up by the cells and no impact on cell viability was observed, independently of the constitutive polymer. All R848-loaded NP activated macrophages to secrete interleukin-6, demonstrating that the drug cargo was immunologically active. Importantly, macrophage activation by NP-delivered R848 was slower than with free R848, in accordance with the in vitro release profiles. Thus, NP prepared from modified PLA polymers showed no signs of toxicity to immune cells and efficiently delivered their immunoactive cargo in a delayed manner. This delivery strategy may enhance the efficacy and safety of small-molecule immunostimulants.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Portadores de Fármacos/química , Imidazóis/administração & dosagem , Neoplasias/tratamento farmacológico , Poliésteres/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos/métodos , Imunoterapia/métodos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Neoplasias/imunologia , Tamanho da Partícula , Cultura Primária de Células
3.
Small ; 14(8)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29327460

RESUMO

An efficient treatment for osteoarthritis (OA) can benefit from the local release of a high therapeutic dose over an extended period of time. Such a treatment will minimize systemic side effects and avoid the inconvenience of frequent injections. To this aim, nanocrystal-polymer particles (NPPs) are developed by combining the advantages of nanotechnology and microparticles. Nanocrystals are produced by wet milling kartogenin (KGN), which is known to promote chondrogenesis and to foster chondroprotection. A fluorescent biodegradable polymer is synthesized for intravital particle tracking. Polymer microparticles with 320 nm embedded KGN nanocrystals (KGN-NPPs) show a high drug loading of 31.5% (w/w) and an extended drug release of 62% over 3 months. In vitro, these particles do not alter mitochondrial activity in cultured human OA synoviocytes. In vivo, KGN-NPPs demonstrate higher bioactivity than a KGN solution in a murine mechanistic OA model based on histological assessment (Osteoarthritis Research Society International score), epiphyseal thickness (microcomputed tomography), OA biomarkers (e.g., vascular endothelial growth factor, Adamts5), and prolonged intra-articular persistence (fluorescence analysis). This work provides proof-of-concept of a novel and innovative extended drug delivery system with the potential to treat human OA.


Assuntos
Anilidas/uso terapêutico , Nanopartículas/química , Osteoartrite/tratamento farmacológico , Ácidos Ftálicos/uso terapêutico , Polímeros/química , Anilidas/química , Animais , Células Cultivadas , Condrogênese/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Injeções Intra-Articulares , Camundongos , Nanotecnologia/métodos , Ácidos Ftálicos/química
4.
Int J Pharm ; 535(1-2): 444-451, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29157965

RESUMO

Small-molecule agonists for the Toll-like receptors (TLR) 7 and 8 are effective for the immunotherapy of skin cancer when used as topical agents. Their systemic use has however been largely unsuccessful due to dose-limiting toxicity. We propose a polymer-based nanodelivery system to target resiquimod, a TLR7 ligand, to the lymph node in order to focus the immunostimulatory activity and to prevent a generalized inflammatory response. We demonstrate successful encapsulation of resiquimod in methoxypoly(ethylene glycol)-b-poly(DL-lactic acid) (mPEG-PLA) and mixed poly(DL-lactic-co-glycolic acid) (PLGA)/mPEG-PLA nanoparticles. We show that these particles are taken up mainly by dendritic cells and macrophages, which are the prime initiators of anticancer immune responses. Nanoparticles loaded with resiquimod activate these cells, demonstrating the availability of the immune-stimulating cargo. The unloaded particles are non-inflammatory and do not have cytotoxic activity on immune cells. Following subcutaneous injection in mice, mPEG-PLA and PLGA/mPEG-PLA nanoparticles are detected in dendritic cells and macrophages in the draining lymph nodes, demonstrating the targeting potential of these particles. Thus, polymer-based nanoparticles represent a promising delivery system that allows lymph node targeting for small-molecule TLR7 agonists in the context of systemic cancer immunotherapy.


Assuntos
Imunização/métodos , Ácido Láctico/administração & dosagem , Linfonodos/metabolismo , Nanopartículas/administração & dosagem , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Imidazóis/administração & dosagem , Imidazóis/química , Ácido Láctico/química , Ligantes , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Baço/citologia , Receptor 7 Toll-Like/metabolismo
5.
Int J Pharm ; 548(2): 771-777, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29104059

RESUMO

Advantages associated with the use of polylactic acid (PLA) nano- or microparticles as drug delivery systems have been widely proven in the field of pharmaceutical sciences. These biodegradable and biocompatible carriers have demonstrated different loading and release properties depending on interactions with the cargo, preparation methods, particles size or molecular weight of PLA. In this study, we sought to show the possibility of influencing these properties by modifying the structure of the constituting polymer. Seven non-functionalized or functionalized PLA polymers were specifically designed and synthesized by microwave-assisted ring-opening polymerization of d,l-lactide. They presented short hydrophobic and/or hydrophilic groups thanks to the use of C20 aliphatic chain, mPEG1000, sorbitan esters (Spans®) or polysorbates (Tweens®), their PEGylated analogues, as initiators. Then, seven types of drug-loaded nanoparticles (NP) were prepared from these polymers and compared in terms of physico-chemical characteristics, drug loading and release profiles. Although the loading properties were not improved with any of the functionalized PLA NP, different release profiles were observed in an aqueous medium at 37 °C and over a period of five days. The presence of PEG moieties in the core of PLA-polysorbates NP induced a faster release while the addition of a single aliphatic chain induced a slower release due to better interactions with the active molecule.


Assuntos
Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Nanopartículas/metabolismo , Poliésteres/farmacocinética , Polímeros/farmacocinética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Poliésteres/administração & dosagem , Poliésteres/química , Polímeros/administração & dosagem , Polímeros/química
6.
PLoS One ; 10(2): e0117215, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658745

RESUMO

Cancer cells are characterized by a complex network of interrelated and compensatory signaling driven by multiple kinases that reduce their sensitivity to targeted therapy. Therefore, strategies directed at inhibiting two or more kinases are required to robustly block the growth of refractory tumour cells. Here we report on a novel strategy to promote sustained inhibition of two oncogenic kinases (Kin-1 and Kin-2) by designing a molecule K1-K2, termed "combi-molecule", to induce a tandem blockade of Kin-1 and Kin-2, as an intact structure and to be further hydrolyzed to two inhibitors K1 and K2 directed at Kin-1 and Kin-2, respectively. We chose to target EGFR (Kin-1) and c-Src (Kin-2), two tyrosine kinases known to synergize to promote tumour growth and progression. Variation of K1-K2 linkers led to AL776, our first optimized EGFR-c-Src targeting prototype. Here we showed that: (a) AL776 blocked EGFR and c-Src as an intact structure using an in vitro kinase assay (IC50 EGFR = 0.12 µM and IC50 c-Src = 3 nM), (b) it could release K1 (AL621, a nanomolar EGFR inhibitor) and K2 (dasatinib, a clinically approved Abl/c-Src inhibitor) by hydrolytic cleavage both in vitro and in vivo, (c) it could robustly inhibit phosphorylation of EGFR and c-Src (0.25-1 µM) in cells, (d) it induced 2-4 fold stronger growth inhibition than gefitinib or dasatinib and apoptosis at concentrations as low as 1 µM, and, (e) blocked motility and invasion at sub-micromolar doses in the highly invasive 4T1 and MDA-MB-231 cells. Despite its size (MW = 1032), AL776 blocked phosphorylation of EGFR and c-Src in 4T1 tumours in vivo. We now term this new targeting model consisting of designing a kinase inhibitor K1-K2 to target Kin-1 and Kin-2, and to further release two inhibitors K1 and K2 of the latter kinases, "type III combi-targeting".


Assuntos
Apoptose/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/toxicidade , Quinazolinas/toxicidade , Tiazóis/toxicidade , Quinases da Família src/antagonistas & inibidores , Animais , Sítios de Ligação , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dasatinibe/toxicidade , Desenho de Fármacos , Receptores ErbB/metabolismo , Feminino , Gefitinibe , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Células NIH 3T3 , Neoplasias/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Estrutura Terciária de Proteína , Quinazolinas/síntese química , Quinazolinas/uso terapêutico , Tiazóis/síntese química , Tiazóis/uso terapêutico , Transplante Heterólogo , Quinases da Família src/metabolismo
7.
J Phys Chem B ; 114(17): 5718-22, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20380427

RESUMO

Because they have a great propensity to aggregation in water, solubilization of carbon nanotubes (CNTs) in aqueous media remains an important challenge. Our laboratory has reported the self-organization of synthetic lipids into hemi-micellar structures at the carbon nanotubes surface. Subsequent stabilization of these carbon nanotube/lipid assembly (CNT/LA) constructs is achieved through photopolymerization of the diyne motif of the pentacosa-10,12-diynoic lipids. Herein we investigate the scope of this coating procedure for CNT solubilization. A panel of CNTs was selected according to the method of production and the characteristics of CNTs. The study revealed that it is possible to reach a complete lipid adsorption. The TEM analyses demonstrate that lipid hemi-micellar self-assemblies can be formed around SWNTs as well as around DWNTs and MWNTs, particularly for carbon nanotubes produced by the arc-discharged method. The nanotube suspensions show a very good stability and are homogeneous for months even at a high nanotubes concentration.


Assuntos
Lipídeos/química , Água/química , Micelas , Nanotubos de Carbono/química , Solubilidade , Propriedades de Superfície
8.
Nat Nanotechnol ; 3(12): 743-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19057595

RESUMO

Amphiphilic molecules-molecules that have both hydrophobic and hydrophilic properties-can self-assemble in water to form diverse structures such as micelles, vesicles and tubes, and these nanostructures can be used for delivering drugs, stabilizing membrane proteins or as nanoreactors. We have previously shown that lipids can self-organize on the surface of single-walled carbon nanotubes into regular ring-shaped assemblies. Here we show that these lipid assemblies can be polymerized and isolated from the nanotube template by application of an electric field. We also demonstrate that these assemblies are monodispersed, water-soluble, and can dissolve various hydrophobic rylene dyes, fullerenes and membrane proteins. The stability of these constructs and their diverse applications will be useful in the fields of cosmetics, medicine and material sciences.


Assuntos
Lipídeos de Membrana/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Polímeros/metabolismo , Sideróforos/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...