Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 108(2): 444-456, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950534

RESUMO

CD19-specific chimeric antigen receptor (CD19-CAR) T-cell therapies mediate durable responses in late-stage B-cell malignancies, but can be complicated by a potentially severe immune effector cell-associated neurotoxicity syndrome (ICANS). Despite broad efforts, the precise mechanisms of ICANS are not entirely known, and resistance to current ICANSdirected therapies (especially corticosteroids) has been observed. Recent data suggest that inflammatory cytokines and/or targeting of cerebral CD19-expressing pericytes can disrupt the blood-brain barrier and facilitate influx of immune cells, including CAR T cells. However, specific tools for CD19-CAR T-cell analysis within often minute samples of cerebrospinal fluid (CSF) are not broadly available. Here, we applied our recently developed digital polymerase chain reaction assays to monitor CD19-CAR T-cell kinetics in CSF and blood in real-world patients with neurotoxicity. Consistently, we observed a CAR T-cell enrichment within CSF in ICANS patients with further progressive accumulation despite intense corticosteroid- containing immuno-chemotherapies in a subset of patients with prolonged and therapy-resistant grade 3-4 neurotoxicity. We used next-generation T-cell receptor-b sequencing to assess the repertoire of treatment-refractory cells. Longitudinal analysis revealed a profound skewing of the T-cell receptor repertoire, which at least partly reflected selective expansion of infused T-cell clones. Interestingly, a major fraction of eventually dominating hyperexpanded T-cell clones were of non-CAR T-cell derivation. These findings hint to a role of therapy-refractory T-cell clones in severe ICANS development and prompt future systematic research to determine if CAR T cells may serve as 'door openers' and to further characterize both CAR-positive and non-CAR T cells to interrogate the transcriptional signature of these possibly pathologic T cells.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva/efeitos adversos , Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos
2.
Blood Adv ; 5(11): 2523-2527, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100900

RESUMO

Data on the association between chimeric antigen receptor (CAR)-T-cell kinetics and patient outcome in the nontrial setting are missing, mainly due to the lack of broadly available CAR-T-cell diagnostic quantification tools. We performed prospective quantification of axicabtagene ciloleucel (axi-cel) in 21 patients treated for aggressive B-cell lymphoma at our clinic. Median peak CAR-T-cell count was 16.14 CAR-T cells/µL. Patients with 16.14/µL or higher peak CAR-T cells (strong expanders) had more day-30 objective responses (91% vs 40%, P = .02). In univariate analysis, peak CAR-T cell ≥ 16.14 (P < .001), normal platelet counts at start of lymphodepletion (P < .001), no prior stem cell transplant (P = .04), and peak CAR-T cells as continuous variable (P = .03) were associated with better progression-free survival (PFS). After adjusting for platelet counts and prior stem cell transplantation, peak CAR-T cells below median was still associated with shorter PFS (relative risk, 0.15, 95% confidence interval, 0.04-0.59, P = .007). Low platelet counts also maintained significant impact on PFS. Our data demonstrate association of axi-cel levels and outcome in a nontrial setting and for the first time use a cutoff to segregate weak and strong expanders with respective outcomes.


Assuntos
Linfoma Difuso de Grandes Células B , Antígenos CD19/uso terapêutico , Produtos Biológicos , Humanos , Imunoterapia Adotiva , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...