Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Peptides ; 136: 170467, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253774

RESUMO

Roux-en-Y gastric bypass (RYGB) is the most efficient intervention in morbid obesity and promotes metabolic improvements in several peripheral tissues. However, the underlying molecular mechanisms are still poorly understood. To further understand the effects of RYGB on peripheral tissues transcriptomes, we determined transcriptome signatures in pancreatic islets, adipose and liver tissue from diet-induced obese (DIO) rats model following RYGB. Whereas RYGB led to discrete gene expression changes in pancreatic islets, substantial transcriptome changes were observed in metabolic and immune signaling pathways in adipose tissue and the liver, indicating major gene adaptive responses in fat-storing tissues. Compared to RYGB DIO rats, peripheral tissue transcriptome signatures were markedly different in caloric restricted weight matching DIO rats, implying that caloric restriction paradigms do not reflect transcriptomic regulations of RYGB induced weight loss. The present gene expression study may serve as a basis for further investigations into molecular regulatory effects in peripheral tissues following RYGB-induced weight loss.


Assuntos
Resistência à Insulina/genética , Fígado/metabolismo , Obesidade Mórbida/genética , Obesidade/genética , Transcriptoma/genética , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Derivação Gástrica , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/cirurgia , Fígado/patologia , Masculino , Obesidade/etiologia , Obesidade/patologia , Obesidade/cirurgia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Obesidade Mórbida/cirurgia , Ratos , Ratos Sprague-Dawley , Redução de Peso/genética
2.
J Clin Endocrinol Metab ; 106(2): e966-e981, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33135737

RESUMO

CONTEXT: The mechanisms underlying Roux-en-Y gastric bypass (RYGB) surgery-induced weight loss and the immediate postoperative beneficial metabolic effects associated with the operation remain uncertain. Enteroendocrine cell (EEC) secretory function has been proposed as a key factor in the marked metabolic benefits from RYGB surgery. OBJECTIVE: To identify novel gut-derived peptides with therapeutic potential in obesity and/or diabetes by profiling EEC-specific molecular changes in obese patients following RYGB-induced weight loss. SUBJECTS AND METHODS: Genome-wide expression analysis was performed in isolated human small intestinal EECs obtained from 20 gut-biopsied obese subjects before and after RYGB. Targets of interest were profiled for preclinical and clinical metabolic effects. RESULTS: Roux-en-Y gastric bypass consistently increased expression levels of the inverse ghrelin receptor agonist, liver-expressed antimicrobial peptide 2 (LEAP2). A secreted endogenous LEAP2 fragment (LEAP238-47) demonstrated robust insulinotropic properties, stimulating insulin release in human pancreatic islets comparable to the gut hormone glucagon-like peptide-1. LEAP238-47 showed reciprocal effects on growth hormone secretagogue receptor (GHSR) activity, suggesting that the insulinotropic action of the peptide may be directly linked to attenuation of tonic GHSR activity. The fragment was infused in healthy human individuals (n = 10), but no glucoregulatory effect was observed in the chosen dose as compared to placebo. CONCLUSIONS: Small intestinal LEAP2 expression was upregulated after RYGB. The corresponding circulating LEAP238-47 fragment demonstrated strong insulinotropic action in vitro but failed to elicit glucoregulatory effects in healthy human subjects.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Derivação Gástrica/métodos , Trato Gastrointestinal/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/cirurgia , Fragmentos de Peptídeos/metabolismo , Transcriptoma , Adolescente , Adulto , Peptídeos Catiônicos Antimicrobianos/genética , Biomarcadores/análise , Proteínas Sanguíneas/genética , Estudos de Casos e Controles , Estudos Cross-Over , Método Duplo-Cego , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/patologia , Feminino , Seguimentos , Humanos , Ilhotas Pancreáticas/patologia , Masculino , Obesidade/patologia , Fragmentos de Peptídeos/genética , Prognóstico , Estudos Prospectivos , Adulto Jovem
3.
Obesity (Silver Spring) ; 28(11): 2163-2174, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33150746

RESUMO

OBJECTIVE: Changes in the secretion of gut-derived peptide hormones have been associated with the metabolic benefits of Roux-en-Y gastric bypass (RYGB) surgery. In this study, the effects of RYGB on anthropometrics, postprandial plasma hormone responses, and mRNA expression in small intestinal mucosa biopsy specimens before and after RYGB were evaluated. METHODS: In a cross-sectional study, 20 individuals with obesity undergoing RYGB underwent mixed meal tests and upper enteroscopy with retrieval of small intestinal mucosa biopsy specimens 3 months before and after surgery. Concentrations of circulating gut and pancreatic hormones during mixed meal tests as well as full mRNA sequencing of biopsy specimens were evaluated. RESULTS: RYGB-induced improvements of body weight and composition, insulin resistance, and circulating cholesterols were accompanied by significant changes in postprandial plasma responses of pancreatic and gut hormones. Global gene expression analysis of biopsy specimens identified 2,437 differentially expressed genes after RYGB, including changes in genes that encode prohormones and G protein-coupled receptors. CONCLUSIONS: RYGB affects the transcription of a wide range of genes, indicating that the observed beneficial metabolic effects of RYGB may rely on a changed expression of several genes in the gut. RYGB-induced changes in the expression of genes encoding signaling peptides and G protein-coupled receptors may disclose new gut-derived treatment targets against obesity and diabetes.


Assuntos
Derivação Gástrica/métodos , Microbioma Gastrointestinal/genética , Expressão Gênica/genética , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Sci Rep ; 9(1): 16161, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695063

RESUMO

The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Redutora , Derivação Gástrica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gliose/genética , Adiposidade , Animais , Astrócitos/metabolismo , Biomarcadores , Dieta Hiperlipídica , Ingestão de Alimentos , Proteína Glial Fibrilar Ácida/análise , Peptídeo 1 Semelhante ao Glucagon/sangue , Inflamação/genética , Microdissecção e Captura a Laser , Masculino , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Obesidade/etiologia , Obesidade/cirurgia , Peptídeo YY/sangue , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Redução de Peso
5.
J Clin Endocrinol Metab ; 104(12): 6403-6416, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276156

RESUMO

CONTEXT: After Roux-en-Y gastric bypass (RYGB) surgery, postprandial plasma glucagon concentrations have been reported to increase. This occurs despite concomitant improved glucose tolerance and increased circulating plasma concentrations of insulin and the glucagon-inhibiting hormone glucagon-like peptide 1 (GLP-1). OBJECTIVE: To investigate whether RYGB-induced hyperglucagonemia may be derived from the gut. DESIGN AND SETTING: Substudy of a prospective cross-sectional study at a university hospital in Copenhagen, Denmark. PARTICIPANTS: Morbidly obese individuals undergoing RYGB (n = 8) with or without type 2 diabetes. INTERVENTIONS: Three months before and after RYGB, participants underwent upper enteroscopy with retrieval of gastrointestinal mucosal biopsy specimens. Mixed-meal tests were performed 1 week and 3 months before and after RYGB. MAIN OUTCOME MEASURES: The 29-amino acid glucagon concentrations in plasma and in mucosal gastrointestinal biopsy specimens were assessed using mass spectrometry-validated immunoassays, and a new monoclonal antibody reacting with immunoreactive glucagon was used for immunohistochemistry. RESULTS: Postprandial plasma concentrations of glucagon after RYGB were increased. Expression of the glucagon gene in the small intestine increased after surgery. Glucagon was identified in the small-intestine biopsy specimens obtained after, but not before, RYGB. Immunohistochemically, mucosal biopsy specimens from the small intestine harbored cells costained for GLP-1 and immunoreactive glucagon. CONCLUSION: Increased concentrations of glucagon were observed in small-intestine biopsy specimens and postprandially in plasma after RYGB. The small intestine harbored cells immunohistochemically costaining for GLP-1 and glucagon-like immunoreactivity after RYGB. Glucagon derived from small-intestine enteroendocrine l cells may contribute to postprandial plasma concentrations of glucagon after RYGB.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Derivação Gástrica/métodos , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucagon/sangue , Insulina/sangue , Intestinos/fisiologia , Obesidade Mórbida/sangue , Adolescente , Adulto , Enteroscopia de Balão , Biomarcadores/sangue , Glicemia/análise , Estudos de Casos e Controles , Estudos Transversais , Feminino , Seguimentos , Polipeptídeo Inibidor Gástrico/sangue , Hemoglobinas Glicadas/análise , Humanos , Masculino , Refeições , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , Período Pós-Prandial , Prognóstico , Estudos Prospectivos , Adulto Jovem
6.
Peptides ; 118: 170100, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31212005

RESUMO

OBJECTIVE: Roux-en-Y gastric bypass (RYGB) leads to rapid remission of type 2 diabetes (T2D) and sustained body weight loss, but the underlying molecular mechanisms are still not fully understood. To further elucidate these mechanisms and identify potentially novel preprohormone encoding genes with anti-diabetic and/or anti-obesity properties, we performed a comprehensive analysis of gene expression changes in enteroendocrine cells after RYGB in diet-induced obese (DIO) rats. METHODS: The mRNA expression profiles of enteroendocrine cell enriched samples were characterized at 9, 22 and 60 days after RYGB surgery in a DIO rat model. Enteroendocrine cells were identified by chromogranin A immunohistochemistry and isolated by laser capture microdissection (LCM) from five regions covering the full rostro-caudal extension of the gastrointestinal (GI) tract. RNA sequencing and bioinformatic analyses were subsequently applied to identify differentially expressed preprohormone encoding genes. RESULTS: From the analysis of enteroendocrine cell mRNA expression profiles, a total of 54 preprohormones encoding genes were found to be differentially regulated at one or more time-points following RYGB. These included well-known RYGB associated preprohormone genes (e.g. Gcg, Cck, Gip, Pyy and Sct) and less characterized genes with putative metabolic effects (e.g. Nmu, Guca2a, Guca2b, Npw and Adm), but also 16 predicted novel preprohormone genes. Among the list of gene transcripts, Npw, Apln and Fam3d were further validated using in situ mRNA hybridization and corresponding peptides were characterized for acute effects on food intake and glucose tolerance in mice. CONCLUSION: We present a comprehensive mRNA expression profile of chromogranin A positive enteroendocrine cells following RYGB in rats. The data provides a region-specific characterization of all regulated preprohormone encoding genes in the rat GI tract including 16 not hitherto known. The comprehensive catalogue of preprohormone expression changes may support our understanding of hormone mediated effects of RYGB on diabetes remission and body weight reduction.


Assuntos
Células Enteroendócrinas/metabolismo , Derivação Gástrica , Obesidade/genética , Obesidade/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Animais , Colecistocinina/genética , Colecistocinina/metabolismo , Biologia Computacional , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Microdissecção e Captura a Laser , Masculino , Camundongos , Obesidade/cirurgia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Somatostatina/genética , Somatostatina/metabolismo , Transcriptoma/genética
7.
Peptides ; 101: 32-43, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29289697

RESUMO

AIM: To determine whether intestinal expression of guanylate cyclase activator 2A (GUCA2A) and guanylate cyclase activator 2B (GUCA2B) genes is regulated in obese humans following Roux-en-Y gastric bypass (RYGB), and to evaluate the corresponding guanylin (GN) and uroguanylin (UGN) peptides for potentially contributing to the beneficial metabolic effects of RYGB. METHODS: Enteroendocrine cells were harvested peri- and post-RYGB, and GUCA2A/GUCA2B mRNA expression was compared. GN, UGN and their prohormones (proGN, proUGN) were administered subcutaneously in normal-weight mice to evaluate effects on food intake and glucose regulation. The effect of pro-UGN or UGN overexpression, using adeno-associated virus (AAV) vectors, was assessed in diet-induced obese (DIO) mice. Intracerebroventricular administration of GN and UGN was performed in rats for assessment of putative centrally mediated effects on food intake. GN and UGN, as well as their prohormones, were evaluated for effects on glucose-stimulated insulin secretion (GSIS) in rat pancreatic islets and perfused rat pancreas. RESULTS: GUCA2A and GUCA2B mRNA expression was significantly upregulated in enteroendocrine cells after RYGB. Peripheral administration of guanylins or prohormones did not influence food intake, oral glucose tolerance, and GSIS. Central administration of GN and UGN did not affect food intake in rats. Chronic AVV-mediated overexpression of UGN and proUGN had no effect on body weight or glucose homeostasis in DIO mice. CONCLUSION: GN and UGN, as well as their prohormones, do not seem to play a significant role in body weight regulation and glycemic control, suggesting that guanylin-family peptides do not show promise as targets for the treatment of obesity or diabetes.


Assuntos
Manutenção do Peso Corporal , Células Enteroendócrinas/metabolismo , Derivação Gástrica , Hormônios Gastrointestinais/biossíntese , Regulação da Expressão Gênica , Peptídeos Natriuréticos/biossíntese , Adulto , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/cirurgia , Feminino , Proteínas Ativadoras de Guanilato Ciclase/biossíntese , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/cirurgia
8.
Arzneimittelforschung ; 58(11): 574-80, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19137908

RESUMO

AVE2268, a substituted glycopyranoside, is an orally active and selective inhibitor of sodium-dependent glucose transporter 2 (SGLT2; IC50 = 13 nmol/L). Investigation of the pharmacological profile of AVE2268 on urinary glucose excretion (UGE) and blood glucose after glucose challenge (po or Intraperitoneal) was performed in mice and rats. AVE2268 caused a dose-dependent increase of UGE in mice (ID30 = 79 +/- 8.1 mg/kg p.o.) and rats (ID30 = 39.8 +/- 4.0 mg/kg p.o.). AVE2268 in mice was more potent to decrease blood glucose ascent when glucose was given intraperitoneally (ID50 = 13.2 +/- 3.9 mg/ kg), compared to orally administered glucose (ID50 = 26.1 +/- 3.9 mg/kg), showing that AVE2268 has no effects on SGLT 1 in the gut in vivo, which is in accordance with ist very low affinity to the SGLT 1 in vitro (IC50 >10,000 nmol/L). During an oral glucose tolerance test, AVE2268 dose-dependently increased UGE, with subsequent decreases of AUC and blood glucose. A highly significant inverse correlation between AUC and UGE was found (p < 0.001). The increase in UGE is linked to the inhibition of SGLT2 only. This profile renders AVE2268 as a new antidiabetic drug for the treatment of type 2 diabetes.


Assuntos
Glicemia/metabolismo , Glucosídeos/farmacologia , Glicosúria/metabolismo , Hipoglicemiantes/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Florizina/farmacologia , Ratos , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...