Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0262374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213559

RESUMO

Toxoplasma gondii has numerous, large, paralogous gene families that are likely critical for supporting its unparalleled host range: nearly any nucleated cell in almost any warm-blooded animal. The SRS (SAG1-related sequence) gene family encodes over 100 proteins, the most abundant of which are thought to be involved in parasite attachment and, based on their stage-specific expression, evading the host immune response. For most SRS proteins, however, little is understood about their function and expression profile. Single-parasite RNA-sequencing previously demonstrated that across an entire population of lab-grown tachyzoites, transcripts for over 70 SRS genes were detected in at least one parasite. In any one parasite, however, transcripts for an average of only 7 SRS genes were detected, two of which, SAG1 and SAG2A, were extremely abundant and detected in virtually all. These data do not address whether this pattern of sporadic SRS gene expression is consistently inherited among the progeny of a given parasite or arises independently of lineage. We hypothesized that if SRS expression signatures are stably inherited by progeny, subclones isolated from a cloned parent would be more alike in their expression signatures than they are to the offspring of another clone. In this report, we compare transcriptomes of clonally derived parasites to determine the degree to which expression of the SRS family is stably inherited in individual parasites. Our data indicate that in RH tachyzoites, SRS genes are variably expressed even between parasite samples subcloned from the same parent within approximately 10 parasite divisions (72 hours). This suggests that the pattern of sporadically expressed SRS genes is highly variable and not driven by inheritance mechanisms, at least under our conditions.


Assuntos
Antígenos de Superfície/genética , Evolução Clonal , Toxoplasma/genética , Transcrição Gênica , Animais , Regulação da Expressão Gênica/genética , Proteínas de Membrana/genética , Proteínas de Protozoários/genética , Transcriptoma/genética
2.
Elife ; 92020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32065584

RESUMO

Toxoplasma gondii, a protozoan parasite, undergoes a complex and poorly understood developmental process that is critical for establishing a chronic infection in its intermediate hosts. Here, we applied single-cell RNA-sequencing (scRNA-seq) on >5,400 Toxoplasma in both tachyzoite and bradyzoite stages using three widely studied strains to construct a comprehensive atlas of cell-cycle and asexual development, revealing hidden states and transcriptional factors associated with each developmental stage. Analysis of SAG1-related sequence (SRS) antigenic repertoire reveals a highly heterogeneous, sporadic expression pattern unexplained by measurement noise, cell cycle, or asexual development. Furthermore, we identified AP2IX-1 as a transcription factor that controls the switching from the ubiquitous SAG1 to rare surface antigens not previously observed in tachyzoites. In addition, comparative analysis between Toxoplasma and Plasmodium scRNA-seq results reveals concerted expression of gene sets, despite fundamental differences in cell division. Lastly, we built an interactive data-browser for visualization of our atlas resource.


Toxoplasma gondii is a single-celled parasite that can infect most warm-blooded animals, but only reproduces sexually in domestic and wild cats. Distantly related to the malaria agent, it currently infects over a quarter of the world's human population. Although it is benign in most cases, the condition can still be dangerous for foetuses and people whose immune system is compromised. In the human body, Toxoplasma cells infiltrate muscle and nerve cells; there it undergoes a complex transformation that helps the parasites to stop dividing quickly and instead hide from the immune system in a dormant state. It is still unclear how this transition unfolds, and in particular which genes are switched on and off at any given time. To understand this transformation, scientists often measure which genes are active across a group of parasites. However, this approach gives only an 'average' picture and does not allow each parasite to be profiled, missing out on the diversity that may exist between individuals. One area of particular interest, for example, is a set of genes called SAG1-related sequences. They code for the 'molecular overcoat' of the parasite, an array of proteins that sit on the surface of Toxoplasma cells. More than 120 SAG1-related genes exist in the genome of each Toxoplasma parasite, creating a whole wardrobe of proteins that potentially hide the parasites from the immune system. Here, Xue et al. harnessed a technique called single-cell RNA sequencing, which allowed them to screen which genes were active in 5,400 individual Toxoplasma parasites from different strains. The analysis included both the rapidly dividing form of the parasite (present in the initial stage of an infection), and the slowly dividing form found in people who carry Toxoplasma without any symptoms. The resulting 'atlas' contains previously hidden information about the genes used at each stage of parasite development: this included unexpected similarities between Toxoplasma and the malaria agent, as well as subtle differences between two of the Toxoplasma strains. The atlas also sheds light on how individual parasites turns on SAG1-related sequences. It reveals a surprising diversity in the composition of the protein coats sported by Toxoplasma cells at the same developmental stage, a strategy that may help to thwart the immune system. One individual parasite in particular had an unusual combination of coat and other proteins found in both the fast and slow-dividing human forms. This parasite had been grown in human cells, yet a closer analysis revealed that it had activated several genes (including ones encoding the protein coat) that are normally only 'on' in the parasites going through sexual reproduction in domestic and wild cats. This new data atlas helps to understand how Toxoplasma are transmitted to and grow within humans, which could aid the development of treatments. Ultimately, a better knowledge of these parasites could also bring new information about the agent that causes malaria.


Assuntos
Antígenos de Protozoários/metabolismo , Toxoplasma/metabolismo , Variação Antigênica , Antígenos de Superfície/metabolismo , Atlas como Assunto , Ciclo Celular , Regulação da Expressão Gênica , Plasmodium/genética , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
3.
mSphere ; 5(1)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075880

RESUMO

Toxoplasma gondii is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the Toxoplasma effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in Toxoplasma and indicate that the process is highly complex and dependent on at least eight discrete proteins.IMPORTANCEToxoplasma is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell, Toxoplasma establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in Toxoplasma-infected cells and provide additional potential drug targets.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Protozoários/metabolismo , Toxoplasma/patogenicidade , Vacúolos/metabolismo , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Células Cultivadas , Ciclina E/genética , Ciclina E/metabolismo , Citosol/metabolismo , Humanos , Imunoprecipitação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Vacúolos/parasitologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
PLoS Pathog ; 14(1): e1006828, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357375

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that can infect virtually all nucleated cells in warm-blooded animals. The ability of Toxoplasma tachyzoites to infect and successfully manipulate its host is dependent on its ability to transport "GRA" proteins that originate in unique secretory organelles called dense granules into the host cell in which they reside. GRAs have diverse roles in Toxoplasma's intracellular lifecycle, including co-opting crucial host cell functions and proteins, such as the cell cycle, c-Myc and p38 MAP kinase. Some of these GRA proteins, such as GRA16 and GRA24, are secreted into the parasitophorous vacuole (PV) within which Toxoplasma replicates and are transported across the PV membrane (PVM) into the host cell, but the translocation process and its machinery are not well understood. We previously showed that TgMYR1, which is cleaved by TgASP5 into two fragments, localizes to the PVM and is essential for GRA transport into the host cell. To identify additional proteins necessary for effector transport, we screened Toxoplasma mutants defective in c-Myc up-regulation for their ability to export GRA16 and GRA24 to the host cell nucleus. Here we report that novel proteins MYR2 and MYR3 play a crucial role in translocation of a subset of GRAs into the host cell. MYR2 and MYR3 are secreted into the PV space and co-localize with PV membranes and MYR1. Consistent with their predicted transmembrane domains, all three proteins are membrane-associated, and MYR3, but not MYR2, stably associates with MYR1, whose N- and C-terminal fragments are disulfide-linked. We further show that fusing intrinsically disordered effectors to a structured DHFR domain blocks the transport of other effectors, consistent with a translocon-based model of effector transport. Overall, these results reveal a novel complex at the PVM that is essential for effector translocation into the host cell.


Assuntos
Interações Hospedeiro-Parasita , Complexos Multiproteicos/metabolismo , Sistemas de Translocação de Proteínas/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Toxoplasma/metabolismo , Fatores de Virulência/metabolismo , Animais , Células Cultivadas , Feminino , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/genética , Organismos Geneticamente Modificados , Sistemas de Translocação de Proteínas/genética , Sistemas de Translocação de Proteínas/metabolismo , Transporte Proteico , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/patogenicidade , Vacúolos/metabolismo
5.
J Interferon Cytokine Res ; 36(10): 589-598, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27447339

RESUMO

After viral infection, type I and III interferons (IFNs) are coexpressed by respiratory epithelial cells (RECs) and activate the ISGF3 transcription factor (TF) complex to induce expression of a cell-specific set of interferon-stimulated genes (ISGs). Type I and III IFNs share a canonical signaling pathway, suggesting that they are redundant. Animal and in vitro models, however, have shown that they are not redundant. Because TFs dictate cellular phenotype and function, we hypothesized that focusing on TF-ISG will reveal critical combinatorial and nonredundant functions of type I or III IFN. We treated BEAS-2B human RECs with increasing doses of IFNß or IFNλ1 and measured expression of TF-ISG. ISGs were expressed in a dose-dependent manner with a nonlinear jump at intermediate doses. At subsaturating combinations of IFNß and IFNλ1, many ISGs were expressed in a pattern that we modeled with a cubic equation that mathematically defines this threshold effect. Uniquely, IFNß alone induced early and transient IRF1 transcript and protein expression, while IFNλ1 alone induced IRF1 protein expression at low levels that were sustained through 24 h. In combination, saturating doses of these 2 IFNs together enhanced and sustained IRF1 expression. We conclude that the cubic model quantitates combinatorial effects of IFNß and IFNλ1 and that IRF1 may mediate nonredundancy of type I or III IFN in RECs.


Assuntos
Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Fatores de Transcrição/genética , Células Cultivadas , Humanos , Fator Regulador 1 de Interferon/metabolismo , Fatores de Transcrição/metabolismo
6.
J Virol ; 89(15): 7567-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25972536

RESUMO

UNLABELLED: Ebola virus (EBOV) causes a severe hemorrhagic fever with a deficient immune response, lymphopenia, and lymphocyte apoptosis. Dendritic cells (DC), which trigger the adaptive response, do not mature despite EBOV infection. We recently demonstrated that DC maturation is unblocked by disabling the innate response antagonizing domains (IRADs) in EBOV VP35 and VP24 by the mutations R312A and K142A, respectively. Here we analyzed the effects of VP35 and VP24 with the IRADs disabled on global gene expression in human DC. Human monocyte-derived DC were infected by wild-type (wt) EBOV or EBOVs carrying the mutation in VP35 (EBOV/VP35m), VP24 (EBOV/VP24m), or both (EBOV/VP35m/VP24m). Global gene expression at 8 and 24 h was analyzed by deep sequencing, and the expression of interferon (IFN) subtypes up to 5 days postinfection was analyzed by quantitative reverse transcription-PCR (qRT-PCR). wt EBOV induced a weak global gene expression response, including markers of DC maturation, cytokines, chemokines, chemokine receptors, and multiple IFNs. The VP35 mutation unblocked the expression, resulting in a dramatic increase in expression of these transcripts at 8 and 24 h. Surprisingly, DC infected with EBOV/VP24m expressed lower levels of many of these transcripts at 8 h after infection, compared to wt EBOV. In contrast, at 24 h, expression of the transcripts increased in DC infected with any of the three mutants, compared to wt EBOV. Moreover, sets of genes affected by the two mutations only partially overlapped. Pathway analysis demonstrated that the VP35 mutation unblocked pathways involved in antigen processing and presentation and IFN signaling. These data suggest that EBOV IRADs have profound effects on the host adaptive immune response through massive transcriptional downregulation of DC. IMPORTANCE: This study shows that infection of DC with EBOV, but not its mutant forms with the VP35 IRAD and/or VP24 IRAD disabled, causes a global block in expression of host genes. The temporal effects of mutations disrupting the two IRADs differ, and the lists of affected genes only partially overlap such that VP35 and VP24 IRADs each have profound effects on antigen presentation by exposed DC. The global modulation of DC gene expression and the resulting lack of their maturation represent a major mechanism by which EBOV disables the T cell response and suggests that these suppressive pathways are a therapeutic target that may unleash the T cell responses during EBOV infection.


Assuntos
Células Dendríticas/metabolismo , Ebolavirus/metabolismo , Expressão Gênica , Doença pelo Vírus Ebola/genética , Interferons/genética , Nucleoproteínas/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas Virais/metabolismo , Células Cultivadas , Células Dendríticas/virologia , Ebolavirus/química , Ebolavirus/genética , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Interferons/metabolismo , Proteínas do Nucleocapsídeo , Nucleoproteínas/química , Nucleoproteínas/genética , Estrutura Terciária de Proteína , Transdução de Sinais , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas Virais/química , Proteínas Virais/genética
7.
J Vis Exp ; (97)2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25867042

RESUMO

Described in this report is a qRT-PCR assay for the analysis of seventeen human IFN subtypes in a 384-well plate format that incorporates highly specific locked nucleic acid (LNA) and molecular beacon (MB) probes, transcript standards, automated multichannel pipetting, and plate drying. Determining expression among the type I interferons (IFN), especially the twelve IFN-α subtypes, is limited by their shared sequence identity; likewise, the sequences of the type III IFN, especially IFN-λ2 and -λ3, are highly similar. This assay provides a reliable, reproducible, and relatively inexpensive means to analyze the expression of the seventeen interferon subtype transcripts.


Assuntos
Interferons/biossíntese , Interferons/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...