Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(2): 3138-3147, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209439

RESUMO

Multiphoton contributions pose a significant challenge for the realisation of heralded single-photon sources (HSPS) based on nonlinear processes. In this work, we improve the quality of single photons generated in this way by harnessing the photon-number resolving (PNR) capabilities of commercial superconducting nanowire single-photon detectors (SNSPDs). We report a 13 ± 0.4% reduction of g(2)(τ = 0), even with a collection efficiency in the photon source of only 29.6%. Our work demonstrates the first application of the PNR capabilities of SNSPDs and shows improvement in the quality of an HSPS with widely available technology.

2.
Phys Rev Lett ; 128(2): 023601, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089759

RESUMO

The ability to manipulate and measure the time-frequency structure of quantum light is useful for information processing and metrology. Measuring this structure is also important when developing quantum light sources with high modal purity that can interfere with other independent sources. Here, we present and experimentally demonstrate a scheme based on intensity interferometry to measure the joint spectral mode of photon pairs produced by spontaneous parametric down-conversion. We observe correlations in the spectral phase of the photons due to chirp in the pump. We show that our scheme can be combined with stimulated emission tomography to quickly measure their mode using bright classical light. Our scheme does not require phase stability, nonlinearities, or spectral shaping and thus is an experimentally simple way of measuring the modal structure of quantum light.

3.
Opt Lett ; 46(11): 2565-2568, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061057

RESUMO

The discrimination of coherent states is a key task in optical communication and quantum key distribution protocols. In this work, we use a photon-number-resolving detector, the transition-edge sensor, to discriminate binary-phase-shifted coherent states at a telecom wavelength. Owing to its dynamic range and high efficiency, we achieve a bit error probability that unconditionally exceeds the standard quantum limit (SQL) by up to 7.7 dB. The improvement to the SQL persists for signals containing up to approximately seven photons on average and is achieved in a single shot (i.e., without measurement feedback), thus making our approach compatible with larger bandwidths.

4.
Phys Rev Lett ; 124(1): 013605, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976720

RESUMO

The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof to account for their particular properties and imperfections. To overcome these obstacles, we derive and implement a measurement scheme that enables a reconstruction of phase-space distributions for arbitrary states whose functionality does not depend on the knowledge of the detectors, thus defining the notion of detector-agnostic phase-space distributions. Our theory presents a generalization of well-known phase-space quasiprobability distributions, such as the Wigner function. We implement our measurement protocol, using state-of-the-art transition-edge sensors without performing a detector characterization. Based on our approach, we reveal the characteristic features of heralded single- and two-photon states in phase space and certify their nonclassicality with high statistical significance.

5.
npj Quantum Inf ; 6(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-34131511

RESUMO

Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of N entangled photons provides up to a N enhancement in phase sensitivity compared to a classical probe of the same energy. Here, we employ high-gain parametric down-conversion sources and photon-number-resolving detectors to perform interferometry with heralded quantum probes of sizes up to N = 8 (i.e. measuring up to 16-photon coincidences). Our probes are created by injecting heralded photon-number states into an interferometer, and in principle provide quantum-enhanced phase sensitivity even in the presence of significant optical loss. Our work paves the way towards quantum-enhanced interferometry using large entangled photonic states.

6.
Phys Rev Lett ; 119(5): 050405, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949711

RESUMO

In a classical world, simultaneous measurements of complementary properties (e.g., position and momentum) give a system's state. In quantum mechanics, measurement-induced disturbance is largest for complementary properties and, hence, limits the precision with which such properties can be determined simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning. The coherent portion of the generated clones' state corresponds to "twins" of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the input system. For complementary observables, this joint measurement gives the system's state, just as in the classical case. We demonstrate this experimentally using polarized single photons.

7.
Phys Rev Lett ; 117(12): 120401, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689255

RESUMO

One drawback of conventional quantum state tomography is that it does not readily provide access to single density matrix elements since it requires a global reconstruction. Here, we experimentally demonstrate a scheme that can be used to directly measure individual density matrix elements of general quantum states. The scheme relies on measuring a sequence of three observables, each complementary to the last. The first two measurements are made weak to minimize the disturbance they cause to the state, while the final measurement is strong. We perform this joint measurement on polarized photons in pure and mixed states to directly measure their density matrix. The weak measurements are achieved using two walk-off crystals, each inducing a polarization-dependent spatial shift that couples the spatial and polarization degrees of freedom of the photons. This direct measurement method provides an operational meaning to the density matrix and promises to be especially useful for large dimensional states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...