Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 189: 106588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369169

RESUMO

Heartwater is one of the most economically important tick-borne fatal diseases of livestock. The disease is caused by the bacteria Ehrlichia ruminantium transmitted by Amblyomma ticks. Although there is evidence that interferon-gamma controls E. ruminantium growth and that cellular immune responses are protective, an effective recombinant vaccine for this disease is lacking. Analyses of markers associated with infection as well as protection will lead to a better understanding of the E. ruminantium immune response and corresponding pathways induced in sheep peripheral blood mononuclear cells (PBMC) will assist in development of such a vaccine. In this study, Biomarkers of infection (BMI) were identified as uniquely expressed genes during primary infection and biomarkers of protection (BMP) associated with immune to heartwater were identified post challenge. Sheep were experimentally infected and challenged with E. ruminantium infected ticks. The immune phenotypic and transcriptome profile of their PBMC were compared to their own naïve PBMC collected before infection. The study revealed 305 differentially expressed genes (DEGs) as BMI, of these 17 were upregulated at all three time-points investigated. These DEGs, form part of the bacterial invasion of epithelial cells Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway, and others detected from day 1 post infection and are considered predictive markers for early heartwater infection in ruminants. Similarly, a total of 332 DEGs were identified as BMP, of these 100 were upregulated and 75 were downregulated at all three time-points investigated. However, at D1PC most DEGs were downregulated (n = 1312) that correlated with a reduction in the % CD4 and CD8 T cells detected with flow cytometry. KEGG pathway analyses showed complete down regulation of T cell specific pathways possibly due to homing of immune cells to the site of infection after acquired immunity developed. At D4PC, expression levels of most of these downregulated genes increased and by D6PC they were upregulated. This indicates that the sampling time-point for biomarker analyses is important when results for acquired immune responses are inferred. This data identified DEGs that could be considered as biomarkers of protective immunity that can be used for identification of vaccine antigens and provides a strong foundation to further development of heartwater recombinant vaccines.


Assuntos
Ehrlichia ruminantium , Hidropericárdio , Carrapatos , Ovinos , Animais , Ehrlichia ruminantium/genética , Leucócitos Mononucleares , Hidropericárdio/diagnóstico , Hidropericárdio/prevenção & controle , Vacinas Sintéticas , Carrapatos/microbiologia , Biomarcadores , RNA
2.
Front Vet Sci ; 7: 256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509806

RESUMO

Lumpy skin disease and Rift Valley fever are two high-priority livestock diseases which have the potential to spread into previously free regions through animal movement and/or vectors, as well as intentional release by bioterrorists. Since the distribution range of both diseases is similar in Africa, it makes sense to use a bivalent vaccine to control them. This may lead to the more consistent and sustainable use of vaccination against Rift Valley fever through a more cost-effective vaccine. In this study, a recombinant lumpy skin disease virus was constructed in which the thymidine kinase gene was used as the insertion site for the Gn and Gc protective glycoprotein genes of Rift Valley fever virus using homologous recombination. Selection markers, the enhanced green fluorescent protein and Escherichia coli guanidine phosphoribosyl transferase (gpt), were used for selection of recombinant virus and in a manner enabling a second recombination event to occur upon removal of the gpt selection-pressure allowing the removal of both marker genes in the final product. This recombinant virus, LSD-RVF.mf, was selected to homogeneity, characterized and evaluated in cattle as a vaccine to show protection against both lumpy skin disease and Rift Valley fever in cattle. The results demonstrate that the LSD-RVF.mf is safe, immunogenic and can protect cattle against both diseases.

3.
Vaccine ; 37(31): 4354-4363, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31248684

RESUMO

Previously, a heartwater experimental DNA vaccine provided 100% protection following laboratory challenge with Ehrlichia ruminantium administered by needle but not against an E. ruminantium tick challenge in the field. A multi-epitope DNA vaccine incorporating both CD4+ and CD8+ cytotoxic T lymphocytes epitopes could provide a better alternative. In this study, we investigated the use of multi-epitope DNA vaccines against an E. ruminantium experimental tick challenge in sheep. The multi-epitope DNA vaccines were delivered via the intramuscular route and intradermal route using the gene gun in the presence of monophosphoryl lipid A (MPL) adjuvant, which was either applied topically to the gene gun inoculation site or co-administered with the vaccine via the intramuscular route. Initially two constructs namely, pSignal plus and pLamp were tested with MPL applied topically only and no protection was obtained in this formulation. However, when pLamp was co-administered with MPL via the intramuscular route in addition to topical application, its protective efficiency improved to protect 60% of the sheep against tick challenge. In this formulation, the vaccine induced enhanced activation of memory T cell responses both before and after challenge with variations amongst the different sheep possibly due to their different genetic backgrounds. In conclusion, this study showed that a heartwater multi-epitope DNA vaccine, co-administered with MPL adjuvant can protect sheep following a laboratory E. ruminantium tick challenge.


Assuntos
Adjuvantes Imunológicos , Ehrlichia ruminantium/imunologia , Epitopos/imunologia , Hidropericárdio/prevenção & controle , Lipídeo A/análogos & derivados , Doenças dos Ovinos/prevenção & controle , Vacinas de DNA/imunologia , Animais , Vetores Aracnídeos/microbiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Hidropericárdio/genética , Hidropericárdio/transmissão , Lipídeo A/imunologia , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Ovinos , Doenças dos Ovinos/genética , Doenças dos Ovinos/transmissão , Carrapatos/microbiologia
4.
Mol Immunol ; 107: 106-114, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30711907

RESUMO

Several studies have shown that cytotoxic T lymphocytes (CTL) require CD4 + Th1 epitopes to generate strong immune responses to intracellular pathogens. However, not much is known about Ehrlichia ruminantium epitopes, particularly those that can be considered potential candidates for inclusion in a multi-epitope vaccine. In order to identify CD4+ Th1 epitopes that induce IFNγ, a number of proteins previously identified as immunogenic were first screened to determine if they induce cellular immunity in tick infected immune sheep PBMC. Significant IFN-γ production and other Th1 cytokines were evident for 10 recombinant proteins in all sheep tested. Secondly, peptides (n = 246) derived from the top 10 E. ruminantium vaccine candidate proteins were assayed using enzyme linked immunospot (ELISPOT) assay, quantitative real-time PCR and flow cytometry. Of the 246 peptides, 23 peptides, Erum0660 (p0660-42), Erum1150 (p1150-18, p1150-19), Erum2540 (p2540-6, p2540-16, p2540-19, p2540-20, p2540-21), Erum5420 (p5420-13, p5420-14), Erum7140 (p7140-6, p7140-7, p7140-12, p7140-13, p7140-20), Erum7320 (p7320-8, p7320-9, p7320-21), Erum7350 (p7350-9), Erum7360 (p7360-8), Erum7620 (p7620-2, p7620-12) and Erum8010 (p8010-8) were identified that stimulate the best and different cell mediated immune responses. Amino acid sequences of these peptides except for p7140-12, p7140-13, p7140-20, and p7350-9 were conserved between 13 different local strains. These peptides could efficiently induce memory CD4+ T cells to rapidly proliferate and significantly increase IFN-γ production in immune sheep PBMC. The upregulation of pro-inflammatory cytokines, which include, IL-1α, IL-2, IL-12p40, TNF-α, IFN-γ, inducible nitric oxide synthase (iNOS) and granulocyte-macrophage colony stimulating factor (GM-CSF) was also detected. Our results show that these peptides could serve as promising candidates for a multi-epitope vaccine against E. ruminantium.


Assuntos
Vacinas Bacterianas/imunologia , Sequência Conservada , Ehrlichia ruminantium/imunologia , Epitopos/imunologia , Ativação Linfocitária/imunologia , Células Th1/imunologia , Animais , Citocinas/genética , Citocinas/metabolismo , Interferon gama/metabolismo , Leucócitos Mononucleares/metabolismo , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Ovinos/imunologia , Ovinos/microbiologia , Ovinos/parasitologia , Carrapatos/fisiologia
5.
Vet Immunol Immunopathol ; 207: 1-9, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30593344

RESUMO

Since CD8+ T cells play an important role in resistance to infection with heartwater, effective vaccines against this disease will likely require identification of antigens that contain CD8+ T cell epitopes responsible for cytotoxic T lymphocyte (CTL) responses. With the use of the fluorescent antigen-transfected target cell (FATT)-CTL assay, IFN-γ ELISPOT and flow cytometry, peptides that induce CTL, proliferation of CD8 + T cells and IFN-γ production were identified as possible target antigens for vaccine development. Of particular relevance was the finding that different peptides from different antigens were able to elicit varied cytotoxic activities by immune peripheral blood mononuclear cells (PBMC) from heartwater immune tick-infected sheep. Several peptides derived from Erum0660, Erum2330, Erum2540, Erum2580 and Erum5000 induced CTL in immune sheep PBMC. Peptide Erum2540-6 was the only peptide that induced significant CTL, CD8+CD45RO+ and CD8+IFN-γ+ by PBMC from all three sheep, and Erum2540 and p2540-20 induced the highest % CTL response in all three outbred sheep. These results suggest that these epitopes may be of major importance in heartwater recombinant vaccine development.


Assuntos
Antígenos de Bactérias/imunologia , Ehrlichia ruminantium/imunologia , Peptídeos/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Vacinas Bacterianas/imunologia , Epitopos/imunologia , Feminino , Imunofluorescência/veterinária , Hidropericárdio/imunologia , Hidropericárdio/microbiologia , Hidropericárdio/prevenção & controle , Técnicas In Vitro , Ativação Linfocitária/imunologia , Masculino , Reação em Cadeia da Polimerase/veterinária , Ovinos/imunologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...