Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 255: 119112, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788786

RESUMO

For air quality management, while numerical tools are mainly evaluated to assess their performances on absolute concentrations, this study assesses the impact of their settings on the robustness of model responses to emission reduction strategies for the main criteria pollutants. The effect of the spatial resolution and chemistry schemes is investigated. We show that whereas the spatial resolution is not a crucial setting (except for NO2), the chemistry scheme has more impact, particularly when assessing hourly values of the absolute potential of concentrations. The analysis of model responses under the various configurations triggered an analysis of the impact of using online models, like WRF-chem or WRF-CHIMERE, which accounts for the impact of aerosol concentrations on meteorology. This study informs the air quality modeling community on what extent some model settings can affect the expected model responses to emission changes. We suggest to not activate online effects when analyzing the effect of an emission reduction strategy to avoid any confusion in the interpretation of results even if an online simulation should represent better the reality.

2.
Environ Health ; 21(1): 76, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978396

RESUMO

BACKGROUND: Recent reports have suggested that air pollution may impact thyroid function, although the evidence is still scarce and inconclusive. In this study we evaluated the association of exposure to air pollutants to thyroid function parameters in a nationwide sample representative of the adult population of Spain. METHODS: The Di@bet.es study is a national, cross-sectional, population-based survey which was conducted in 2008-2010 using a random cluster sampling of the Spanish population. The present analyses included 3859 individuals, without a previous thyroid disease diagnosis, and with negative thyroid peroxidase antibodies (TPO Abs) and thyroid-stimulating hormone (TSH) levels of 0.1-20 mIU/L. Participants were assigned air pollution concentrations for particulate matter <2.5µm (PM2.5) and Nitrogen Dioxide (NO2), corresponding to the health examination year, obtained by means of modeling combined with measurements taken at air quality stations (CHIMERE chemistry-transport model). TSH, free thyroxine (FT4), free triiodothyronine (FT3) and TPO Abs concentrations were analyzed using an electrochemiluminescence immunoassay (Modular Analytics E170 Roche). RESULTS: In multivariate linear regression models, there was a highly significant negative correlation between PM2.5 concentrations and both FT4 (p<0.001), and FT3 levels (p<0.001). In multivariate logistic regression, there was a significant association between PM2.5 concentrations and the odds of presenting high TSH [OR 1.24 (1.01-1.52) p=0.043], lower FT4 [OR 1.25 (1.02-1.54) p=0.032] and low FT3 levels [1.48 (1.19-1.84) p=<0.001] per each IQR increase in PM2.5 (4.86 µg/m3). There was no association between NO2 concentrations and thyroid hormone levels. No significant heterogeneity was seen in the results between groups of men, pre-menopausal and post-menopausal women. CONCLUSIONS: Exposures to PM2.5 in the general population were associated with mild alterations in thyroid function.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos Transversais , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/análise , Material Particulado/análise , Glândula Tireoide/química , Hormônios Tireóideos , Tireotropina
3.
Sci Rep ; 11(1): 19702, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611240

RESUMO

Exposure to air particulate matter has been linked with hypertension and blood pressure levels. The metabolic risks of air pollution could vary according to the specific characteristics of each area, and has not been sufficiently evaluated in Spain. We analyzed 1103 individuals, participants in a Spanish nationwide population based cohort study (di@bet.es), who were free of hypertension at baseline (2008-2010) and completed a follow-up exam of the cohort (2016-2017). Cohort participants were assigned air pollution concentrations for particulate matter < 10 µm (PM10) and < 2.5 µm (PM2.5) during follow-up (2008-2016) obtained through modeling combined with measurements taken at air quality stations (CHIMERE chemistry-transport model). Mean and SD concentrations of PM10 and PM2.5 were 20.17 ± 3.91 µg/m3 and 10.83 ± 2.08 µg/m3 respectively. During follow-up 282 cases of incident hypertension were recorded. In the fully adjusted model, compared with the lowest quartile of PM10, the multivariate weighted ORs (95% CIs) for developing hypertension with increasing PM10 exposures were 0.82 (0.59-1.14), 1.28 (0.93-1.78) and 1.45 (1.05-2.01) in quartile 2, 3 and 4 respectively (p for a trend of 0.003). The corresponding weighted ORs according to PM2.5 exposures were 0.80 (0.57-1.13), 1.11 (0.80-1.53) and 1.48 (1.09-2.00) (p for trend 0.004). For each 5-µg/m3 increment in PM10 and PM2.5 concentrations, the odds for incident hypertension increased 1.22 (1.06-1.41) p = 0.007 and 1.39 (1.07-1.81) p = 0.02 respectively. In conclusion, our study contributes to assessing the impact of particulate pollution on the incidence of hypertension in Spain, reinforcing the need for improving air quality as much as possible in order to decrease the risk of cardiometabolic disease in the population.


Assuntos
Exposição Ambiental/efeitos adversos , Hipertensão/epidemiologia , Hipertensão/etiologia , Material Particulado/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos , Poluição do Ar , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Razão de Chances , Vigilância em Saúde Pública , Medição de Risco , Fatores de Risco , Espanha/epidemiologia , Adulto Jovem
4.
Atmos Chem Phys ; 18(14): 10199-10218, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450115

RESUMO

The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.

5.
Environ Pollut ; 227: 194-206, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28460237

RESUMO

Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Mudança Climática , Ecossistema , Monitoramento Ambiental , Poluição do Ar/estatística & dados numéricos , Biodiversidade , Clima , Humanos , Nitrogênio/análise , Pesquisa
6.
Environ Monit Assess ; 186(9): 5831-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24894911

RESUMO

Nitrogen (N) deposition has doubled the natural N inputs received by ecosystems through biological N fixation and is currently a global problem that is affecting the Mediterranean regions. We evaluated the existing relationships between increased atmospheric N deposition and biogeochemical indicators related to soil chemical factors and cryptogam species across semiarid central, southern, and eastern Spain. The cryptogam species studied were the biocrust-forming species Pleurochaete squarrosa (moss) and Cladonia foliacea (lichen). Sampling sites were chosen in Quercus coccifera (kermes oak) shrublands and Pinus halepensis (Aleppo pine) forests to cover a range of inorganic N deposition representative of the levels found in the Iberian Peninsula (between 4.4 and 8.1 kg N ha(-1) year(-1)). We extended the ambient N deposition gradient by including experimental plots to which N had been added for 3 years at rates of 10, 20, and 50 kg N ha(-1) year(-1). Overall, N deposition (extant plus simulated) increased soil inorganic N availability and caused soil acidification. Nitrogen deposition increased phosphomonoesterase (PME) enzyme activity and PME/nitrate reductase (NR) ratio in both species, whereas the NR activity was reduced only in the moss. Responses of PME and NR activities were attributed to an induced N to phosphorus imbalance and to N saturation, respectively. When only considering the ambient N deposition, soil organic C and N contents were positively related to N deposition, a response driven by pine forests. The PME/NR ratios of the moss were better predictors of N deposition rates than PME or NR activities alone in shrublands, whereas no correlation between N deposition and the lichen physiology was observed. We conclude that integrative physiological measurements, such as PME/NR ratios, measured on sensitive species such as P. squarrosa, can provide useful data for national-scale biomonitoring programs, whereas soil acidification and soil C and N storage could be useful as additional corroborating ecosystem indicators of chronic N pollution.


Assuntos
Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental , Nitrogênio/análise , Briófitas/química , Líquens/química , Fixação de Nitrogênio , Fósforo/análise , Pinus/química , Quercus/química , Solo/química , Espanha
7.
Environ Pollut ; 179: 120-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23669461

RESUMO

We examined the consequences of the spatial heterogeneity of atmospheric ammonia (NH3) by measuring and modelling NH3 concentrations and deposition at 25 m grid resolution for a rural landscape containing intensive poultry farming, agricultural grassland, woodland and moorland. The emission pattern gave rise to a high spatial variability of modelled mean annual NH3 concentrations and dry deposition. Largest impacts were predicted for woodland patches located within the agricultural area, while larger moorland areas were at low risk, due to atmospheric dispersion, prevailing wind direction and low NH3 background. These high resolution spatial details are lost in national scale estimates at 1 km resolution due to less detailed emission input maps. The results demonstrate how the spatial arrangement of sources and sinks is critical to defining the NH3 risk to semi-natural ecosystems. These spatial relationships provide the foundation for local spatial planning approaches to reduce environmental impacts of atmospheric NH3.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Monitoramento Ambiental , Modelos Químicos , Agricultura , Atmosfera/química , Ecossistema , Meio Ambiente
8.
Environ Pollut ; 179: 185-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23685631

RESUMO

Anthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3-7.3 kg N ha⁻¹ yr⁻¹) from semiarid areas of Spain and a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community. Soil organic N did not increase along the extant gradient. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Net ammonification and nitrification (which dominated N-mineralization) were reduced and increased, respectively, by N fertilization, suggesting alterations in the N cycle. Soil organic C content, C:N ratios and the activity of ß-glucosidase decreased along the extant gradient in most locations. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions when experiencing increased N deposition.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Ciclo do Nitrogênio/efeitos dos fármacos , Nitrogênio/análise , Microbiologia do Solo , Solo/química , Poluentes Atmosféricos/toxicidade , Sequestro de Carbono , Ecossistema , Nitrogênio/toxicidade , Espanha
9.
Philos Trans R Soc Lond B Biol Sci ; 368(1621): 20130166, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23713128

RESUMO

Existing descriptions of bi-directional ammonia (NH3) land-atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission-deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28-67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45-85) Tg N in 2008 to reach 132 (89-179) Tg by 2100.


Assuntos
Poluição do Ar/análise , Amônia/química , Atmosfera/análise , Mudança Climática , Clima , Modelos Teóricos , Ciclo do Nitrogênio , Amônia/análise , Animais , Aves , Estados Unidos
10.
J Inorg Biochem ; 104(2): 126-35, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19932509

RESUMO

Combination agents comprising two different pharmacophores with the same biological target have the potential to show additive or synergistic activity. Bis(thiosemicarbazonato)copper(II) complexes (e.g. (64)Cu-ATSM) and nitroimidazoles (e.g. (18)F-MISO) are classes of tracer used for the delineation of tumor hypoxia by positron emission tomography (PET). Three nitroimidazole-bis(thiosemicarbazonato)copper(II) conjugates were produced in order to investigate their potential as combination hypoxia imaging agents. Two were derived from the known bifunctional bis(thiosemicarbazone) H(2)ATSM/A and the third from the new precursor diacetyl-2-(4-N-methyl-3-thiosemicarbazone)-3-(4-N-ethylamino-3-thiosemicarbazone) - H(2)ATSM/en. Oxygen-dependent uptake studies were performed using the (64)Cu radiolabelled complexes in EMT6 carcinoma cells. All the complexes displayed appreciable hypoxia selectivity, with the nitroimidazole conjugates displaying greater selectivity than a simple propyl derivative used as a control. Participation of the nitroimidazole group in the trapping mechanism is indicated by the increased hypoxic uptake of the 2- vs. the 4-substituted (64)Cu-ATSM/A derivatives. The 2-nitroimidazole derivative of (64)Cu-ATSM/en demonstrated superior hypoxia selectivity to (64)Cu-ATSM over the range of oxygen concentrations tested. Biodistribution of the radiolabelled 2-nitroimidazole conjugates was carried out in EMT6 tumor-bearing mice. The complexes showed significantly different uptake trends in comparison to each other and previously studied Cu-ATSM derivatives. Uptake of the Cu-ATSM/en conjugate in non-target organs was considerably lower than for derivatives based on Cu-ATSM/A.


Assuntos
Nitroimidazóis/química , Compostos Organometálicos/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Tiossemicarbazonas/química , Animais , Transporte Biológico/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Complexos de Coordenação , Radioisótopos de Cobre , Feminino , Hipóxia/diagnóstico por imagem , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Químicos , Estrutura Molecular , Oxigênio/metabolismo , Oxigênio/farmacologia , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
11.
Rapid Commun Mass Spectrom ; 20(2): 81-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16331745

RESUMO

Passive and active ammonia (NH(3)) sampling devices have been tested for their nitrogen (N) capture potential and delta(15)N fractionation effects. Several sampling techniques produced significantly different delta(15)NH(3) signals when sampling the same NH(3) source released from field site fumigation campaigns. Conventional passive NH(3)-monitoring systems have shown to provide insufficient N for isotope-ratio mass spectrometry and various modified devices have been developed, based on existing diffusion tube designs, to overcome this problem. The final sampler design was then tested in a wind tunnel to verify that sampling NH(3) in different environmental conditions did not significantly fractionate the delta(15)N signal.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Atmosfera/análise , Monitoramento Ambiental/instrumentação , Análise de Falha de Equipamento , Espectrometria de Massas/instrumentação , Monitoramento Ambiental/métodos , Desenho de Equipamento , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...