Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(12): 2434-2450, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949073

RESUMO

The SORL1 gene (SORLA) is strongly associated with risk of developing Alzheimer's disease (AD). SORLA is a regulator of endosomal trafficking in neurons and interacts with retromer, a complex that is a "master conductor" of endosomal trafficking. Small molecules can increase retromer expression in vitro, enhancing its function. We treated hiPSC-derived cortical neurons that are either fully deficient, haploinsufficient, or that harbor one copy of SORL1 variants linked to AD with TPT-260, a retromer-enhancing molecule. We show significant increases in retromer subunit VPS26B expression. We tested whether endosomal, amyloid, and TAU pathologies were corrected. We observed that the degree of rescue by TPT-260 treatment depended on the number of copies of functional SORL1 and which SORL1 variant was expressed. Using a disease-relevant preclinical model, our work illuminates how the SORL1-retromer pathway can be therapeutically harnessed.


Assuntos
Doença de Alzheimer , Proteínas Relacionadas a Receptor de LDL , Proteínas de Membrana Transportadoras , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Endossomos/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/metabolismo
2.
Neuropathol Appl Neurobiol ; 48(5): e12819, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35508761

RESUMO

AIM: Tau truncation (tr-tau) by active caspase-6 (aCasp-6) generates tau fragments that may be toxic. Yet the relationship between aCasp-6, different forms of tr-tau and hyperphosphorylated tau (p-tau) accumulation in human brains with Alzheimer's disease (AD) and other tauopathies remains unclear. METHODS: We generated two neoepitope monoclonal antibodies against tr-tau sites (D402 and D13) targeted by aCasp-6. Then, we used five-plex immunofluorescence to quantify the neuronal and astroglial burden of aCasp-6, tr-tau, p-tau and their co-occurrence in healthy controls, AD and primary tauopathies. RESULTS: Casp-6 activation was strongest in AD and Pick's disease (PiD) but almost absent in 4-repeat (4R) tauopathies. In neurons, the tr-tau burden was much more abundant in AD and PiD than in 4R tauopathies and disproportionally higher when normalising by p-tau pathology. Tr-tau astrogliopathy was detected in low numbers in 4R tauopathies. Unexpectedly, about half of tr-tau positive neurons in AD and PiD lacked p-tau aggregates, a finding we confirmed using several p-tau antibodies. CONCLUSIONS: Early modulation of aCasp-6 to reduce tr-tau pathology is a promising therapeutic strategy for AD and PiD but is unlikely to benefit 4R tauopathies. The large percentage of tr-tau-positive neurons lacking p-tau suggests that many vulnerable neurons to tau pathology go undetected when using conventional p-tau antibodies. Therapeutic strategies against tr-tau pathology could be necessary to modulate the extent of tau abnormalities in AD. The disproportionally higher burden of tr-tau in AD and PiD supports the development of biofluid biomarkers against tr-tau to detect AD and PiD and differentiate them from 4R tauopathies at a patient level.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Encéfalo/patologia , Caspase 6 , Humanos , Neurônios/patologia , Tauopatias/diagnóstico , Tauopatias/patologia , Tauopatias/terapia , Proteínas tau/metabolismo
3.
Acta Neuropathol ; 141(5): 631-650, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33427939

RESUMO

Alzheimer's disease (AD) is neuropathologically characterized by the intracellular accumulation of hyperphosphorylated tau and the extracellular deposition of amyloid-ß plaques, which affect certain brain regions in a progressive manner. The locus coeruleus (LC), a small nucleus in the pons of the brainstem, is widely recognized as one of the earliest sites of neurofibrillary tangle formation in AD. Patients with AD exhibit significant neuronal loss in the LC, resulting in a marked reduction of its size and function. The LC, which vastly innervates several regions of the brain, is the primary source of the neurotransmitter norepinephrine (NE) in the central nervous system. Considering that NE is a major modulator of behavior, contributing to neuroprotection and suppression of neuroinflammation, degeneration of the LC in AD and the ultimate dysregulation of the LC-NE system has detrimental effects in the brain. In this review, we detail the neuroanatomy and function of the LC, its essential role in neuroprotection, and how this is dysregulated in AD. We discuss AD-related neuropathologic changes in the LC and mechanisms by which LC neurons are selectively vulnerable to insult. Further, we elucidate the neurotoxic effects of LC de-innervation both locally and at projection sites, and how this augments disease pathology, progression and severity. We summarize how preservation of the LC-NE system could be used in the treatment of AD and other neurodegenerative diseases affected by LC degeneration.


Assuntos
Doença de Alzheimer/patologia , Locus Cerúleo/patologia , Degeneração Neural/patologia , Animais , Humanos
4.
Alzheimers Dement ; 15(10): 1253-1263, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31416793

RESUMO

INTRODUCTION: Sleep-wake disturbances are a common and early feature in Alzheimer's disease (AD). The impact of early tau pathology in wake-promoting neurons (WPNs) remains unclear. METHODS: We performed stereology in postmortem brains from AD individuals and healthy controls to identify quantitative differences in morphological metrics in WPNs. Progressive supranuclear palsy (PSP) and corticobasal degeneration were included as disease-specific controls. RESULTS: The three nuclei studied accumulate considerable amounts of tau inclusions and showed a decrease in neurotransmitter-synthetizing neurons in AD, PSP, and corticobasal degeneration. However, substantial neuronal loss was exclusively found in AD. DISCUSSION: WPNs are extremely vulnerable to AD but not to 4 repeat tauopathies. Considering that WPNs are involved early in AD, such degeneration should be included in the models explaining sleep-wake disturbances in AD and considered when designing a clinical intervention. Sparing of WPNs in PSP, a condition featuring hyperinsomnia, suggest that interventions to suppress the arousal system may benefit patients with PSP.


Assuntos
Doença de Alzheimer/patologia , Neurônios/patologia , Transtornos do Sono-Vigília/complicações , Tauopatias/patologia , Idoso , Autopsia , Encéfalo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paralisia Supranuclear Progressiva/patologia
5.
J Neuropathol Exp Neurol ; 77(2): 149-161, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304218

RESUMO

The brainstem nuclei of the reticular formation (RF) are critical for regulating homeostasis, behavior, and cognition. RF degenerates in tauopathies including Alzheimer disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Although the burden of phopho-tau inclusion is high across these diseases, suggesting a similar vulnerability pattern, a distinct RF-associated clinical phenotype in these diseases indicates the opposite. To compare patterns of RF selective vulnerability to tauopathies, we analyzed 5 RF nuclei in tissue from 14 AD, 14 CBD, 10 PSP, and 3 control cases. Multidimensional quantitative analysis unraveled discernable differences on how these nuclei are vulnerable to AD, CBD, and PSP. For instance, PSP and CBD accrued more tau inclusions than AD in locus coeruleus, suggesting a lower vulnerability to AD. However, locus coeruleus neuronal loss in AD was so extreme that few neurons remained to develop aggregates. Likewise, tau burden in gigantocellular nucleus was low in AD and high in PSP, but few GABAergic neurons were present in AD. This challenges the hypothesis that gigantocellular nucleus neuronal loss underlies REM behavioral disorders because REM behavioral disorders rarely manifests in AD. This study provides foundation for characterizing the clinical consequences of RF degeneration in tauopathies and guiding customized treatment.


Assuntos
Tronco Encefálico/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurotransmissores/metabolismo , Estudos Retrospectivos
6.
Neurobiol Aging ; 61: 1-12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031088

RESUMO

Clarifying the mechanisms connecting neurofibrillary tangle (NFT) neurotoxicity to neuronal dysfunction in humans is likely to be pivotal for developing effective treatments for Alzheimer's disease (AD). To model the temporal progression of AD in humans, we used a collection of brains with controls and individuals from each Braak stage to quantitatively investigate the correlation between intraneuronal caspase activation or macroautophagy markers, NFT burden, and neuronal loss, in the dorsal raphe nucleus and locus coeruleus, the earliest vulnerable areas to NFT accumulation. We fit linear regressions with each count as outcomes, with Braak score and age as the predictors. In progressive Braak stages, intraneuronal active caspase-6 positivity increases both alone and overlapping with NFTs. Likewise, the proportion of NFT-bearing neurons showing autophagosomes increases. Overall, caspases may be involved in upstream cascades in AD and are associated with higher NFTs. Macroautophagy changes correlate with increasing NFT burden from early AD stages.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Encéfalo/patologia , Morte Celular , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , Idoso , Idoso de 80 Anos ou mais , Autofagossomos , Autofagia/fisiologia , Caspase 6/metabolismo , Caspase 6/fisiologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
J Neurosci Res ; 95(11): 2182-2194, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28370142

RESUMO

Connexin 43 (Cx43) is the main astrocytic connexin and forms the basis of the glial syncytium. The morphology of connexin-expressing cells can be best studied in transgenic mouse lines expressing cytoplasmic fluorescent reporters, since immunolabeling the plaques can obscure the shapes of the individual cells. The Cx43kiECFP mouse generated by Degen et al. (FASEBJ 26:4576, 2012) expresses cytosolic ECFP and has previously been used to establish that Cx43 may not be expressed by all astrocytes within a population, and this can vary in a region-dependent way. To establish this mouse line as a tool for future astrocyte and connexin research, we sought to consolidate reporter authenticity, studying cell types and within-region population heterogeneity. Applying anti-GFP, all cell types related to astroglia were positive-namely, protoplasmic astrocytes in the hippocampus, cortex, thalamus, spinal cord, olfactory bulb, cerebellum with Bergmann glia and astrocytes also in the molecular layer, and retinal Müller cells and astrocytes. Labeled cell types further comprise white matter astrocytes, olfactory ensheathing cells, radial glia-like stem cells, retinal pigment epithelium cells, ependymal cells, and meningeal cells. We furthermore describe a retinal Cx43-expressing amacrine cell morphologically reminiscent of ON-OFF wide-field amacrine cells, representing the first example of a mammalian CNS neuron-expressing Cx43 protein. In double staining with cell type-specific markers (GFAP, S100ß, glutamine synthetase), Cx43 reporter expression in the hippocampus and cortex was restricted to GFAP+ astrocytes. Altogether, this mouse line is a highly reliable tool for studies of Cx43-expressing CNS cells and astroglial cell morphology. © 2017 Wiley Periodicals, Inc.


Assuntos
Células Amácrinas/metabolismo , Conexina 43/biossíntese , Proteínas de Fluorescência Verde/metabolismo , Neuroglia/metabolismo , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Células Amácrinas/química , Animais , Conexina 43/análise , Feminino , Proteínas de Fluorescência Verde/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/química , Bulbo Olfatório/química , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Mucosa Olfatória/química
8.
Alzheimers Dement ; 13(3): 236-246, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27513978

RESUMO

INTRODUCTION: Alzheimer's disease (AD) progression follows a specific spreading pattern, emphasizing the need to characterize those brain areas that degenerate first. The brainstem's locus coeruleus (LC) is the first area to develop neurofibrillary changes (neurofibrillary tangles [NFTs]). METHODS: The methods include unbiased stereological analyses in human brainstems to estimate LC volume and neuronal population in controls and individuals across all AD stages. RESULTS: As the Braak stage increases by 1 unit, the LC volume decreases by 8.4%. Neuronal loss started only midway through AD progression. Age-related changes spare the LC. DISCUSSION: The long gap between NFT accumulation and neuronal loss suggests that a second trigger may be necessary to induce neuronal death in AD. Imaging studies should determine whether LC volumetry can replicate the stage-wise atrophy observed here and how these changes are specific to AD. LC volumetry may develop into a screening biomarker for selecting high-yield candidates to undergo expensive and less accessible positron emission tomography scans and to monitor AD progression from presymptomatic stages.


Assuntos
Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Locus Cerúleo/patologia , Neurônios/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas Estereotáxicas
9.
J Alzheimers Dis ; 46(1): 17-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25720408

RESUMO

Pharmacological interventions in Alzheimer's disease (AD) are likely to be more efficacious if administered early in the course of the disease, foregoing the spread of irreversible changes in the brain. Research findings underline an early vulnerability of the isodendritic core (IC) network to AD neurofibrillary lesions. The IC constitutes a phylogenetically conserved subcortical system including the locus coeruleus in pons, dorsal raphe nucleus, and substantia nigra in the midbrain, and nucleus basalis of Meynert in basal forebrain. Through their ascending projections to the cortex, the IC neurons regulate homeostasis and behavior by synthesizing aminergic and cholinergic neurotransmitters. Here we reviewed the evidence demonstrating that neurons of the IC system show neurofibrillary tangles in the earliest stages of AD, prior to cortical pathology, and how this involvement may explain pre-amnestic symptoms, including depression, agitation, and sleep disturbances in AD patients. In fact, clinical and animal studies show a significant reduction of AD cognitive and behavioral symptoms following replenishment of neurotransmitters associated with the IC network. Therefore, the IC network represents a unique candidate for viable therapeutic intervention and should become a high priority for research in AD.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Rede Nervosa/patologia , Neurônios/patologia , Humanos , Emaranhados Neurofibrilares/patologia
10.
J Neurosci Methods ; 226: 171-183, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24503023

RESUMO

Despite a massive research effort to elucidate Alzheimer's disease (AD) in recent decades, effective treatment remains elusive. This failure may relate to an oversimplification of the pathogenic processes underlying AD and also lack of understanding of AD progression during its long latent stages. Although evidence shows that the two specific neuropathological hallmarks in AD (neuronal loss and protein accumulation), which are opposite in nature, do not progress in parallel, the great majority of studies have focused on only one of these aspects. Furthermore, research focusing on single structures is likely to render an incomplete picture of AD pathogenesis because as AD involves complete brain networks, potential compensatory mechanisms within the network may ameliorate impairment of the system to a certain extent. Here, we describe an approach for enabling integrative analysis of the dual-nature lesions, simultaneously, in all components of one of the brain networks most vulnerable to AD. This approach is based on significant development of methods previously described mainly by our group that were optimized and complemented for this study. It combines unbiased stereology with immunohistochemistry and immunofluorescence, making use of advanced graphics computing for three-dimensional (3D) volume reconstructions. Although this study was performed in human brainstem and focused in AD, it may be applied to the study of any neurological disease characterized by dual-nature lesions, in humans and animal models. This approach does not require a high level of investment in new equipment and a significant number of specimens can be processed and analyzed within a funding cycle.


Assuntos
Doença de Alzheimer/patologia , Tronco Encefálico/patologia , Imunofluorescência/métodos , Imageamento Tridimensional/métodos , Imuno-Histoquímica/métodos , Idoso , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/metabolismo , Encefalopatias/patologia , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Imunofluorescência/economia , Humanos , Imageamento Tridimensional/economia , Imuno-Histoquímica/economia , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Masculino , Pessoa de Meia-Idade , Vias Neurais/metabolismo , Vias Neurais/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Núcleos da Rafe/metabolismo , Núcleos da Rafe/patologia , Fatores de Tempo
11.
Cereb Cortex ; 24(1): 67-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22997174

RESUMO

Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.


Assuntos
Adenosina Quinase/fisiologia , Adenosina/fisiologia , Homeostase/fisiologia , Sinapses/fisiologia , Adenosina Quinase/genética , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Espaço Extracelular/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Purinas/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/fisiologia , Receptores de GABA-A/fisiologia , Transmissão Sináptica/fisiologia
12.
Acta Neuropathol ; 125(4): 581-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23371364

RESUMO

Post-translational modifications play a key role in tau protein aggregation and related neurodegeneration. Because hyperphosphorylation alone does not necessarily cause tau aggregation, other post-translational modifications have been recently explored. Tau acetylation promotes aggregation and inhibits tau's ability to stabilize microtubules. Recent studies have shown co-localization of acetylated and phosphorylated tau in AD and some 4R tauopathies. We developed a novel monoclonal antibody against acetylated tau at lysine residue 274, which recognizes both 3R and 4R tau, and used immunohistochemistry and immunofluorescence to probe 22 cases, including AD and another eight familial or sporadic tauopathies. Acetylated tau was identified in all tauopathies except argyrophilic grain disease (AGD). AGD is an age-associated, common but atypical 4R tauopathy, not always associated with clinical progression. Pathologically, AGD is characterized by neuropil grains, pre-neurofibrillary tangles, and oligodendroglial coiled bodies, all recognized by phospho-tau antibodies. The lack of acetylated tau in these inclusions suggests that AGD represents a distinctive tauopathy. Our data converge with previous findings to raise the hypothesis that AGD could play a protective role against the spread of AD-related tau pathology. Tau acetylation as a key modification for the propagation tau toxicity deserves further investigation.


Assuntos
Encéfalo/metabolismo , Tauopatias/diagnóstico , Proteínas tau/metabolismo , Acetilação , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Processamento de Proteína Pós-Traducional , Tauopatias/metabolismo , Tauopatias/patologia
13.
Exp Neurol ; 235(2): 497-507, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22309833

RESUMO

MicroRNAs are small non-coding RNAs that regulate post-transcriptional gene expression. In the short time since the discovery of microRNAs, the literature has burgeoned with studies focused on the biosynthesis of microRNAs, target prediction and binding, and mechanisms of translational repression by microRNAs. Given the prominent role of microRNAs in all areas of cell biology, it is not surprising that microRNAs are also linked to human diseases, including those of the nervous system. One of the least-studied areas of microRNA research is how their expression is regulated outside of development and cancer. Thus, we examined a role for regulation of microRNAs by neurotransmitter receptor activation in mouse brain. We focused on the group I metabotropic glutamate receptors by using intracerebroventricular injection of the selective agonist, (S)-3,5-dihydroxyphenylglycine (DHPG) in mouse brain. We then examined the expression of microRNAs in the cerebral cortex by Ambion and Invitrogen microarrays, and the expression of mature microRNA sequences by SABiosciences qPCR arrays, at 4, 8 and 24 h after DHPG injection. These studies revealed that the largest number of significantly regulated microRNAs was detected 8h after DHPG injection in the microarrays and qPCR arrays. We then used RNA blots to quantify microRNA expression, and in situ hybridization to examine cellular distribution of the microRNAs regulated by DHPG. Bioinformatic analysis of the microRNAs regulated 8 h after DHPG in all three arrays revealed KEGG pathways that are known to correlate with group I mGluR effects, as well as recently described and novel pathways. These studies are the first to show that DHGP regulates the expression of microRNAs in mouse cerebral cortex, and support the hypothesis that group I mGluRs may regulate microRNA expression in mouse brain.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Glicina/análogos & derivados , MicroRNAs/biossíntese , Resorcinóis/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Glicina/administração & dosagem , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/biossíntese
14.
J Clin Invest ; 121(7): 2679-83, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21701065

RESUMO

A ketogenic diet (KD) is a high-fat, low-carbohydrate metabolic regimen; its effectiveness in the treatment of refractory epilepsy suggests that the mechanisms underlying its anticonvulsive effects differ from those targeted by conventional antiepileptic drugs. Recently, KD and analogous metabolic strategies have shown therapeutic promise in other neurologic disorders, such as reducing brain injury, pain, and inflammation. Here, we have shown that KD can reduce seizures in mice by increasing activation of adenosine A1 receptors (A1Rs). When transgenic mice with spontaneous seizures caused by deficiency in adenosine metabolism or signaling were fed KD, seizures were nearly abolished if mice had intact A1Rs, were reduced if mice expressed reduced A1Rs, and were unaltered if mice lacked A1Rs. Seizures were restored by injecting either glucose (metabolic reversal) or an A1R antagonist (pharmacologic reversal). Western blot analysis demonstrated that the KD reduced adenosine kinase, the major adenosine-metabolizing enzyme. Importantly, hippocampal tissue resected from patients with medically intractable epilepsy demonstrated increased adenosine kinase. We therefore conclude that adenosine deficiency may be relevant to human epilepsy and that KD can reduce seizures by increasing A1R-mediated inhibition.


Assuntos
Dieta Cetogênica , Epilepsia/dietoterapia , Receptor A1 de Adenosina/metabolismo , Convulsões/dietoterapia , Adenosina Quinase/metabolismo , Adolescente , Adulto , Animais , Anticonvulsivantes/uso terapêutico , Eletroencefalografia , Epilepsia/tratamento farmacológico , Hipocampo/citologia , Hipocampo/enzimologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptor A1 de Adenosina/genética , Convulsões/tratamento farmacológico , Adulto Jovem
15.
Epilepsia ; 52(3): 589-601, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21275977

RESUMO

PURPOSE: Given the high incidence of refractory epilepsy, novel therapeutic approaches and concepts are urgently needed. To date, viral-mediated delivery and endogenous expression of antisense sequences as a strategy to prevent seizures have received little attention in epilepsy therapy development efforts. Here we validate adenosine kinase (ADK), the astrocyte-based key negative regulator of the brain's endogenous anticonvulsant adenosine, as a potential therapeutic target for antisense-mediated seizure suppression. METHODS: We developed adenoassociated virus 8 (AAV8)-based gene therapy vectors to selectively modulate ADK expression in astrocytes. Cell type selectivity was achieved by expressing an Adk-cDNA in sense or antisense orientation under the control of an astrocyte-specific gfaABC1D promoter. Viral vectors where injected into the CA3 of wild-type mice or spontaneously epileptic Adk-tg transgenic mice that overexpress ADK in brain. After virus injection, ADK expression was assessed histologically and biochemically. In addition, intracranial electroencephalography (EEG) recordings were obtained. KEY FINDINGS: We demonstrate in wild-type mice that viral overexpression of ADK within astrocytes is sufficient to trigger spontaneous recurrent seizures in the absence of any other epileptogenic event, whereas ADK downregulation via AAV8-mediated RNA interference almost completely abolished spontaneous recurrent seizures in Adk-tg mice. SIGNIFICANCE: Our data demonstrate that modulation of astrocytic ADK expression can trigger or prevent seizures, respectively. This is the first study to use an antisense approach to validate ADK as a rational therapeutic target for the treatment of epilepsy and suggests that gene therapies based on the knock down of ADK might be a feasible approach to control seizures in refractory epilepsy.


Assuntos
Adenosina Quinase/genética , Anticonvulsivantes/farmacologia , DNA Antissenso/farmacologia , Epilepsia/genética , Epilepsia/terapia , Terapia Genética , Animais , Astrócitos/fisiologia , DNA Antissenso/genética , DNA Complementar/genética , Eletroencefalografia , Técnicas de Silenciamento de Genes , Vetores Genéticos , Proteína Glial Fibrilar Ácida/genética , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Processamento de Sinais Assistido por Computador
16.
Seizure ; 19(7): 390-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20688264

RESUMO

PURPOSE: Intracerebral delivery of anti-epileptic compounds represents a novel strategy for the treatment of refractory epilepsy. Adenosine is a possible candidate for local delivery based on its proven anti-epileptic effects. Neural stem cells constitute an ideal cell source for intracerebral transplantation and long-term drug delivery. In order to develop a cell-based system for the long-term delivery of adenosine, we isolated neural progenitor cells from adenosine kinase deficient mice (Adk(-/-)) and compared their differentiation potential and adenosine release properties with corresponding wild-type cells. METHODS: Fetal neural progenitor cells were isolated from the brains of Adk(-/-) and C57BL/6 mice fetuses and expanded in vitro. Before and after neural differentiation, supernatants were collected and assayed for adenosine release using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Adk(-/-) cells secreted significantly more adenosine compared to wild-type cells at any time point of differentiation. Undifferentiated Adk(-/-) cells secreted 137+/-5 ng adenosine per 10(5) cells during 24 h in culture, compared to 11+/-1 ng released from corresponding wild-type cells. Adenosine release was maintained after differentiation as differentiated Adk(-/-) cells continued to release significantly more adenosine per 24 h (47+/-1 ng per 10(5) cells) compared to wild-type cells (3+/-0.2 ng per 10(5) cells). CONCLUSIONS: Fetal neural progenitor cells isolated from Adk(-/-) mice--but not those from C57BL/6 mice--release amounts of adenosine considered to be of therapeutic relevance.


Assuntos
Adenosina/administração & dosagem , Astrócitos/transplante , Epilepsia/tratamento farmacológico , Células-Tronco Fetais/transplante , Transplante de Células-Tronco/métodos , Adenosina Quinase/deficiência , Adenosina Quinase/genética , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Western Blotting , Diferenciação Celular , Cromatografia Líquida , Feminino , Células-Tronco Fetais/citologia , Células-Tronco Fetais/metabolismo , Imuno-Histoquímica , Injeções Intraventriculares , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase
17.
J Neuropathol Exp Neurol ; 68(1): 102-10, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19104441

RESUMO

Prolonged and repetitive epileptic activity is causally linked to neuronal cell death in the brain and is most marked in vulnerable subfields of the hippocampus. The Bcl-2 family protein Bim, a proapoptotic member of the BCL-2 homology domain 3-only subfamily, has been implicated as an important mediator of neuronal cell damage in various pathological conditions, although its role in epilepsy-associated cell death is not understood. We performed intrahippocampal stereotaxic injections of the glutamate analog kainic acid as an in vivo model of acute excitotoxicity to assess neuronal injury in Bim-deficient and control wild-type mice. A variety of cell death parameters including chromatin condensation, TdT-mediated dUTP nick end labeling, and caspase-3 activity was assessed. We found no differences in the extent of hippocampal neuronal death parameters between the 2 groups. Moreover, electroencephalographic recordings after kainic acid injection revealed indistinguishable patterns of seizure activity in Bim-deficient and wild-type animals. These in vivo and histological data suggest that Bim is not critically involved in excitotoxicity-induced acute neuronal cell injury.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/fisiologia , Proteínas de Membrana/fisiologia , Neurônios/patologia , Síndromes Neurotóxicas/fisiopatologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/deficiência , Proteína 11 Semelhante a Bcl-2 , Caspase 3/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Eletroencefalografia , Agonistas de Aminoácidos Excitatórios/toxicidade , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Marcação In Situ das Extremidades Cortadas/métodos , Ácido Caínico/toxicidade , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Convulsões/induzido quimicamente , Técnicas Estereotáxicas , Fatores de Tempo
18.
Behav Brain Res ; 167(1): 183-95, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16214239

RESUMO

Studies examining the effects of hippocampal lesions on object recognition memory in rats have produced conflicting results. The present study investigated how methodological differences and lesion size may have contributed to these discrepancies. In Experiment 1 we compared rats with complete, partial (septal) and sham hippocampal lesions on a spontaneous object recognition task, using a protocol previously reported to result in deficits following large hippocampal lesions . Rats with complete and partial hippocampal lesions were unimpaired, suggesting the hippocampus is not required for object recognition memory. However, rats with partial lesions showed relatively poor performance raising the possibility that floor effects masked a deficit on this group. In Experiment 2, we used a second spontaneous object recognition protocol similar to that used by the two other studies that have reported deficits following hippocampal lesions . Rats with complete hippocampal lesions were significantly impaired, whereas rats with partial lesions were unimpaired. However, the complete lesion group showed less object exploration during the sample phase. Thus, the apparent recognition memory deficit in Experiment 2 may be attributable to differential encoding. Together, these findings suggest that the hippocampus is not required for intact spontaneous object recognition memory. These findings suggest that levels of object exploration during the sample phase may be a critical issue, and raise the possibility that previous reports of object recognition deficits may be due to differences in object exploration rather than deficits in object recognition per se.


Assuntos
Lesões Encefálicas/fisiopatologia , Comportamento Exploratório/fisiologia , Hipocampo/patologia , Hipocampo/fisiologia , Reconhecimento Psicológico , Análise de Variância , Animais , Comportamento Animal , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/patologia , Comportamento de Escolha/fisiologia , Hipocampo/lesões , Ácido Ibotênico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Testes Neuropsicológicos/estatística & dados numéricos , Distribuição Aleatória , Ratos , Tempo de Reação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...