Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(43): 96840-96859, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37580477

RESUMO

We synthesized a γ-irradiated chitosan-ZnO-AgNPs (ICZA) composite by using a simple hydrogels method. We evaluated its adsorption/photocatalytic degradation abilities for the removal of an organic dye and its antibacterial activity. The XRD, SEM, TEM, EDS, and FTIR techniques were used to characterize the obtained samples. Based on the adsorption and degradation of methylene blue (MB) in the dark and under UV light irradiation, the adsorption and the photocatalytic activity of the as-obtained samples were evaluated. The optimum conditions for synthesizing the composite were as follows: contact time of 210 min, a dosage of 2 g/L, MB concentration of 40 mg/L, and a solution pH of 8.0. The ICZA had a high adsorption capacity, which was suitable for removing MB from the aqueous solutions; it showed a maximum adsorption capacity (qm) of 92.59 mg/g. The fit of the adsorption isotherms with the Langmuir model was satisfactory. The photocatalytic degradation ability of the composite was also better than that of other catalysts in the presence of UV light, with an apparent rate constant (kapp) of 3.08 × 10-2. The synthesized ICZA also showed good antibacterial activity against Staphylococcus aureus, with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 12.5 g/mL and 50 g/mL under light-incubation and dark-incubation conditions. Finally, we discussed the hypothesized mechanism of the adsorption/photocatalytic activity and antibacterial activity of the ICZA composite in this study.


Assuntos
Quitosana , Óxido de Zinco , Quitosana/química , Óxido de Zinco/química , Adsorção , Corantes/química , Antibacterianos/farmacologia , Antibacterianos/química
2.
Anal Bioanal Chem ; 412(13): 3167-3176, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32303795

RESUMO

This work presents a portable microfluidic paper-based analytical device (micro-PAD) card for the quantification of total ammonia nitrogen in human saliva. The amount of total ammonia nitrogen in saliva can be an indicator of the status of the oral microbiome with potential correlation to kidney health problems. The developed micro-PAD card comprises twenty units consisting of three stacked layers of circular discs: the sample layer, paper discs impregnated with sodium hydroxide solution, the PTFE membrane layer, and the detection layer, paper discs impregnated with bromothymol blue. The twenty units were aligned on transparent laminating pouches laminated to form the micro-PAD card (7.5 cm × 10.5 cm). Saliva samples can be directly dispensed onto the micro-PAD card and the detection was achieved by the BTB indicator color change, from yellow to blue, after conversion of ammonium into ammonia and diffusion of the ammonia gas through a hydrophobic layer. The determination of total ammonia nitrogen in saliva using the developed micro-PAD card intended to be very simple method and operated without the need of laboratory equipment. A quantification limit of 11.3 NH4+mg L-1 and linear application range from up to 150 NH4+mg L-1 were obtained making it suitable for the expected concentrations of total ammonia nitrogen in human saliva. It was successfully applied to saliva samples and its validation obtained by comparison against a potentiometric method. The card is stable for at least 1 month making it ideal as a portable device for point-of-care diagnosis. Graphical Abstract.


Assuntos
Amônia/análise , Nitrogênio/análise , Papel , Saliva/química , Humanos , Limite de Detecção
3.
Bioanalysis ; 12(7): 455-465, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32343172

RESUMO

Aim: Salivary urea and ammonium levels are potential biomarkers for chronic kidney disease. A fast and efficient assessment of these compounds in the saliva of healthy and diseased individuals may be a useful tool to monitor kidney function. Materials & methods: Ammonium ions were measured with an ammonia selective electrode after conversion to ammonia gas. A urease reactor was incorporated in the manifold to hydrolyze urea to ammonium, thereby providing values of ammonia from both urea and ammonium ions in the sample. The accuracy of the method was assessed by comparison with a commercially available kit for urea and ammonium determination. Conclusion: A sequential injection method for the biparametric determination of salivary urea and ammonium employing a single sequential injection manifold was successfully applied to samples collected from both healthy volunteers and chronic kidney disease patients.


Assuntos
Biomarcadores/química , Nitrogênio/química , Saliva/química , Ureia/química , Humanos
4.
Anal Chim Acta ; 1103: 115-121, 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32081176

RESUMO

This work presents a novel development that exploits the concept of in-situ gas-separation together with a specific enzymatic colorimetric detection to produce a portable biosensor called "Blood Alcohol Micro-pad" for direct quantitation of ethanol in whole blood. The thin square device (25 mm × 25 mm × 1.8 mm) comprises two layers of patterned filter paper held together with a double-sided mounting tape with an 8-mm circular hole (the headspace). In operation, the reagent is deposited on one layer and covered with sticky tape. Then 8 µL of a blood sample is dispensed onto the opposite layer and covered with sticky tape. Diffusion of ethanol across the 1.6 mm narrow headspace permits selective detection of ethanol by the enzymatic reagents deposited on the opposite layer. This reagent zone contains alcohol oxidase, horseradish peroxidase and 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, as the chromogenic reagent. The color intensity, measured from the recorded digital image, resulting from the enzymatic assay of ethanol, correlates with the concentration of blood alcohol. The results obtained with spiked mice and sheep blood samples, using an external calibration in the range of 1-120 mg dL-1ethanol, gave recoveries of 93.2-104.4% (n = 12). The "Blood Alcohol Micro-pad" gave good precision with %RSD <1 (50 mg dL-1 ethanol, n = 10) and limit of quantification (10SD of intercept/slope) of 11.56 mg dL-1. The method was successfully validated against a headspace gas chromatography-mass spectrometric method. It has good potential for development as a simple and convenient blood alcohol sensor for on-site testing.


Assuntos
Técnicas Biossensoriais/métodos , Colorimetria/métodos , Etanol/sangue , Papel , Oxirredutases do Álcool/química , Animais , Armoracia/enzimologia , Benzotiazóis/química , Técnicas Biossensoriais/instrumentação , Colorimetria/instrumentação , Etanol/química , Peroxidase do Rábano Silvestre/química , Indicadores e Reagentes/química , Camundongos , Reprodutibilidade dos Testes , Ácidos Sulfônicos/química
5.
Talanta ; 205: 120113, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450420

RESUMO

This work presents the use of polyvinyl chloride (PVC) fabric ink, commonly employed for screening t-shirts, as new and versatile material for printing hydrophobic barrier on paper substrate for microfluidic paper-based analytical devices (µPADs). Low-cost, screen-printing apparatus (e.g., screen mesh, squeegee, and printing table) and materials (e.g. PVC ink and solvent) were employed to print the PVC ink solution onto Whatman filter paper No. 4. This provides a one-step strategy to print flow barriers without the need of further processing except evaporation for 3-5 min in a fume hood to remove the solvent. The production of the single layer µPADs is reasonably high with up to 77 devices per screening with 100% success rate. This method produces very narrow fluidic channel 486 ±â€¯14 µm in width and hydrophobic barrier of 642 ±â€¯25 µm thickness. Reproducibility of the production of fluidic channels and zones is satisfactory with RSDs of 2.9% (for 486-µm channel, n = 10), 3.7% (for 2-mm channel, n = 50) and 1.5% (for 6-mm diameter circular zone, n = 80). A design of a 2D-µPAD produced by this method was employed for the colorimetric dual-measurements of thiocyanate and nitrite in saliva. A 3D-µPADs with multiple layers of ink-screened paper was designed and constructed to demonstrate the method's versatility. These 3D-µPADs were designed for gas-liquid separation with in-situ colorimetric detection of ethanol vapor on the µPADs. The 3D-µPADs were applied for direct quantification of ethanol in beverages and highly colored pharmaceutical products. The printed barrier was resistant up to 8% (v/v) ethanol without liquid creeping out of the barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...