Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Adv ; 8(46): eabo7621, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399563

RESUMO

Tumors exploit numerous immune checkpoints, including those deployed by myeloid cells to curtail antitumor immunity. Here, we show that the C-type lectin receptor CLEC-1 expressed by myeloid cells senses dead cells killed by programmed necrosis. Moreover, we identified Tripartite Motif Containing 21 (TRIM21) as an endogenous ligand overexpressed in various cancers. We observed that the combination of CLEC-1 blockade with chemotherapy prolonged mouse survival in tumor models. Loss of CLEC-1 reduced the accumulation of immunosuppressive myeloid cells in tumors and invigorated the activation state of dendritic cells (DCs), thereby increasing T cell responses. Mechanistically, we found that the absence of CLEC-1 increased the cross-presentation of dead cell-associated antigens by conventional type-1 DCs. We identified antihuman CLEC-1 antagonist antibodies able to enhance antitumor immunity in CLEC-1 humanized mice. Together, our results demonstrate that CLEC-1 acts as an immune checkpoint in myeloid cells and support CLEC-1 as a novel target for cancer immunotherapy.


Assuntos
Apresentação Cruzada , Neoplasias , Camundongos , Animais , Apresentação de Antígeno , Imunoterapia , Células Dendríticas , Neoplasias/terapia
2.
Front Immunol ; 12: 732530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925315

RESUMO

A numerous number of positive and negative signals via various molecules modulate T-cell activation. Within the various transmembrane proteins, SIRPγ is of interest since it is not expressed in rodents. SIRPγ interaction with CD47 is reevaluated in this study. Indeed, we show that the anti-SIRPγ mAb clone LSB2.20 previously used by others has not been appropriately characterized. We reveal that the anti-SIRPα clone KWAR23 is a Pan anti-SIRP mAb which efficiently blocks SIRPα and SIRPγ interactions with CD47. We show that SIRPγ expression on T cells varies with their differentiation and while being expressed on Tregs, is not implicated in their suppressive functions. SIRPγ spatial reorganization at the immune synapse is independent of its interaction with CD47. In vitro SIRPα-γ/CD47 blockade with KWAR23 impairs IFN-γ secretion by chronically activated T cells. In vivo in a xeno-GvHD model in NSG mice, the SIRPγ/CD47 blockade with the KWAR23 significantly delays the onset of the xeno-GvHD and deeply impairs human chimerism. In conclusion, we have shown that T-cell interaction with CD47 is of importance notably in chronic stimulation.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Ativação Linfocitária/efeitos dos fármacos , Muromonab-CD3/administração & dosagem , Receptores Imunológicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Doadores de Sangue , Antígeno CD47/genética , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Voluntários Saudáveis , Xenoenxertos , Humanos , Células Jurkat , Ativação Linfocitária/genética , Masculino , Camundongos , Muromonab-CD3/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Transdução de Sinais/genética
3.
J Clin Invest ; 130(11): 6109-6123, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33074246

RESUMO

T cell exclusion causes resistance to cancer immunotherapies via immune checkpoint blockade (ICB). Myeloid cells contribute to resistance by expressing signal regulatory protein-α (SIRPα), an inhibitory membrane receptor that interacts with ubiquitous receptor CD47 to control macrophage phagocytosis in the tumor microenvironment. Although CD47/SIRPα-targeting drugs have been assessed in preclinical models, the therapeutic benefit of selectively blocking SIRPα, and not SIRPγ/CD47, in humans remains unknown. We report a potent synergy between selective SIRPα blockade and ICB in increasing memory T cell responses and reverting exclusion in syngeneic and orthotopic tumor models. Selective SIRPα blockade stimulated tumor nest T cell recruitment by restoring murine and human macrophage chemokine secretion and increased anti-tumor T cell responses by promoting tumor-antigen crosspresentation by dendritic cells. However, nonselective SIRPα/SIRPγ blockade targeting CD47 impaired human T cell activation, proliferation, and endothelial transmigration. Selective SIRPα inhibition opens an attractive avenue to overcoming ICB resistance in patients with elevated myeloid cell infiltration in solid tumors.


Assuntos
Memória Imunológica , Imunoterapia , Neoplasias Mamárias Experimentais/terapia , Proteínas de Neoplasias/imunologia , Receptores Imunológicos/imunologia , Linfócitos T/imunologia , Animais , Feminino , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/genética , Receptores Imunológicos/genética , Linfócitos T/patologia
4.
Am J Transplant ; 19(12): 3263-3275, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31207067

RESUMO

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses. Interaction of SIRP alpha (SIRPα), expressed by myeloid cells, with the ubiquitous receptor CD47 is an important immune checkpoint of the innate response regulating macrophages and dendritic cells functions. We previously described that MDSC expressing SIRPα accumulated after transplantation and maintained kidney allograft tolerance. However, the role of the SIRPα/CD47 axis on MDSC function remained unknown. Here, we found that blocking SIRPα or CD47 with monoclonal antibodies (mAbs) induced differentiation of MDSC into myeloid cells overexpressing MHC class II, CD86 costimulatory molecule and increased secretion of macrophage-recruiting chemokines (eg, MCP-1). Using a model of long-term kidney allograft tolerance sustained by MDSC, we observed that administration of blocking anti-SIRPα or CD47 mAbs induced graft dysfunction and rejection. Loss of tolerance came along with significant decrease of MDSC and increase in MCP-1 concentration in the periphery. Graft histological and transcriptomic analyses revealed an inflammatory (M1) macrophagic signature at rejection associated with overexpression of MCP-1 mRNA and protein in the graft. These findings indicate that the SIRPα-CD47 axis regulates the immature phenotype and chemokine secretion of MDSC and contributes to the induction and the active maintenance of peripheral acquired immune tolerance.


Assuntos
Antígeno CD47/metabolismo , Rejeição de Enxerto/imunologia , Transplante de Rim/efeitos adversos , Células Mieloides/imunologia , Células Supressoras Mieloides/imunologia , Receptores Imunológicos/metabolismo , Tolerância ao Transplante/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/imunologia , Quimiocinas , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto/imunologia , Células Mieloides/citologia , Ratos , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/imunologia
5.
J Clin Invest ; 129(5): 1910-1925, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30939120

RESUMO

It remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4ß7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy. While in mice IL-7 is known to play a role in systemic inflammation, we found that in humans IL-7 also controlled α4ß7 integrin expression and imprinted gut-homing specificity on T cells. IL-7R blockade reduced human T cell homing to the gut and colonic inflammation in vivo in humanized mouse models, and altered effector T cells in colon explants from UC patients grown ex vivo. Our findings show that failure of current treatments for CD and UC is strongly associated with an overexpressed IL-7R signaling pathway and point to IL-7R as a relevant therapeutic target and potential biomarker to fill an unmet need in clinical IBD detection and treatment.


Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , Doença de Crohn/metabolismo , Receptores de Interleucina-7/metabolismo , Linfócitos T/citologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adolescente , Adulto , Idoso , Animais , Colo/patologia , Citocinas/metabolismo , Endoscopia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Doença Enxerto-Hospedeiro/metabolismo , Humanos , Inflamação , Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Transdução de Sinais , Adulto Jovem
6.
Nat Commun ; 9(1): 4483, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367166

RESUMO

Targeting the expansion of pathogenic memory immune cells is a promising therapeutic strategy to prevent chronic autoimmune attacks. Here we investigate the therapeutic efficacy and mechanism of new anti-human IL-7Rα monoclonal antibodies (mAb) in non-human primates and show that, depending on the target epitope, a single injection of antagonistic anti-IL-7Rα mAbs induces a long-term control of skin inflammation despite repeated antigen challenges in presensitized monkeys. No modification in T cell numbers, phenotype, function or metabolism is observed in the peripheral blood or in response to polyclonal stimulation ex vivo. However, long-term in vivo hyporesponsiveness is associated with a significant decrease in the frequency of antigen-specific T cells producing IFN-γ upon antigen restimulation ex vivo. These findings indicate that chronic antigen-specific memory T cell responses can be controlled by anti-IL-7Rα mAbs, promoting and maintaining remission in T-cell mediated chronic inflammatory diseases.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Memória Imunológica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Receptores de Interleucina-7/antagonistas & inibidores , Linfócitos T/imunologia , Animais , Doença Crônica , Deleção Clonal/imunologia , Modelos Animais de Doenças , Humanos , Memória Imunológica/imunologia , Inflamação/imunologia , Interferon gama/imunologia , Papio , Receptores de Interleucina-7/agonistas , Receptores de Interleucina-7/imunologia , Transdução de Sinais/efeitos dos fármacos , Pele/imunologia , Pele/patologia
7.
J Immunol ; 197(12): 4593-4602, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27849166

RESUMO

FR104 is a monovalent pegylated Fab' Ab, antagonist of CD28, under development for treatment of transplant rejection and autoimmune diseases. In contrast to CD80/86 antagonists (CTLA4-Ig), FR104 selectively blunts CD28 costimulation while sparing CTLA-4 and PD-L1 coinhibitory signals. In the present work, FR104 has been evaluated in a first-in-human study to evaluate the safety, pharmacokinetics, pharmacodynamics, and potency of i.v. administrations in healthy subjects. Sixty-four subjects were randomly assigned to four single ascending dose groups, two double dose groups and four single ascending dose groups challenged with keyhole limpet hemocyanin. Subjects were followed up over a maximum of 113 d. Overall, the pharmacokinetics of FR104 after a single and double infusions was approximately linear at doses ≥0.200 mg/kg. CD28 receptor occupancy by FR104 was saturated at the first sampling time point (0.5 h) at doses above 0.02 mg/kg and returned to 50% in a dose-dependent manner, by day 15 (0.020 mg/kg) to 85 (1.500 mg/kg). FR104 was well tolerated, with no evidence of cytokine-release syndrome and no impact on blood lymphocyte subsets. Inhibition of anti-keyhole limpet hemocyanin Ab response was dose-dependent in FR104 recipients and was already apparent at a dose of 0.02 mg/kg. Abs to FR104 were detected in 22/46 (48%) of FR104 recipients and only 1/46 (2.2%) was detected during drug exposure. In conclusion, selective blockade of CD28 with FR104 was safe and well tolerated at the doses tested. The observed immunosuppressive activity indicated that FR104 has potential to show clinical activity in the treatment of immune-mediated diseases.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doenças Autoimunes/terapia , Rejeição de Enxerto/prevenção & controle , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Imunoterapia/métodos , Transplante de Órgãos , Administração Intravenosa , Adulto , Anticorpos Monoclonais/farmacologia , Doenças Autoimunes/imunologia , Antígenos CD28/antagonistas & inibidores , Antígenos CD28/imunologia , Protocolos Clínicos , Estudos de Coortes , Feminino , Seguimentos , Rejeição de Enxerto/imunologia , Voluntários Saudáveis , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunossupressores , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade
8.
PLoS One ; 9(10): e110371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25310701

RESUMO

A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.


Assuntos
Modelos Animais de Doenças , Distrofina/deficiência , Distrofia Muscular Animal , Distrofia Muscular de Duchenne/genética , Animais , Sequência de Bases , Creatina Quinase/sangue , Distrofina/genética , Distrofina/metabolismo , Éxons , Feminino , Fibrose , Deleção de Genes , Expressão Gênica , Marcação de Genes , Masculino , Debilidade Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Remodelação Ventricular/genética
9.
Genome Res ; 24(8): 1371-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24989021

RESUMO

The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner.


Assuntos
Marcação de Genes , Engenharia Genética , Animais , Sequência de Bases , Células Cultivadas , Enzimas de Restrição do DNA/biossíntese , Enzimas de Restrição do DNA/genética , Feminino , Hipoxantina Fosforribosiltransferase/genética , Masculino , Microinjeções , Ratos Sprague-Dawley , Ratos Transgênicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Reparo de DNA por Recombinação , Zigoto
10.
Methods ; 69(1): 102-7, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24583114

RESUMO

The rat is a model of choice to understanding gene function and modeling human diseases. Since recent years, successful engineering technologies using gene-specific nucleases have been developed to gene edit the genome of different species, including the rat. This development has become important for the creation of new rat animals models of human diseases, analyze the role of genes and express recombinant proteins. Transcription activator-like (TALE) nucleases are designed nucleases consist of a DNA binding domain fused to a nuclease domain capable of cleaving the targeted DNA. We describe a detailed protocol for generating knockout rats via microinjection of TALE nucleases into fertilized eggs. This technology is an efficient, cost- and time-effective method for creating new rat models.


Assuntos
Técnicas de Inativação de Genes , Mutagênese Sítio-Dirigida/métodos , Animais , Reparo do DNA por Junção de Extremidades , Desoxirribonucleases/química , Desoxirribonucleases/genética , Transferência Embrionária , Embrião de Mamíferos , Feminino , Recombinação Homóloga , Microinjeções , Ratos , Ratos Sprague-Dawley
11.
Curr Gene Ther ; 14(5): 365-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25687502

RESUMO

BACKGROUND: Zinc finger nucleases (ZFNs) are promising tools for genome editing for biotechnological as well as therapeutic purposes. Delivery remains a major issue impeding targeted genome modification. Lentiviral vectors are highly efficient for delivering transgenes into cell lines, primary cells and into organs, such as the liver. However, the reverse transcription of lentiviral vectors leads to recombination of homologous sequences, as found between and within ZFN monomers. METHODS: We used a codon swapping strategy to both drastically disrupt sequence identity between ZFN monomers and to reduce sequence repeats within a monomer sequence. We constructed lentiviral vectors encoding codon-swapped ZFNs or unmodified ZFNs from a single mRNA transcript. Cell lines, primary hepatocytes and newborn rats were used to evaluate the efficacy of integrative-competent (ICLV) and integrative-deficient (IDLV) lentiviral vectors to deliver ZFNs into target cells. RESULTS: We reduced total identity between ZFN monomers from 90.9% to 61.4% and showed that a single ICLV allowed efficient expression of functional ZFNs targeting the rat UGT1A1 gene after codon-swapping, leading to much higher ZFN activity in cell lines (up to 7-fold increase compared to unmodified ZFNs and 60% activity in C6 cells), as compared to plasmid transfection or a single ICLV encoding unmodified ZFN monomers. Off-target analysis located several active sites for the 5-finger UGT1A1-ZFNs. Furthermore, we reported for the first time successful ZFN-induced targeted DNA double-strand breaks in primary cells (hepatocytes) and in vivo (liver) after delivery of a single IDLV encoding two ZFNs. CONCLUSION: These results demonstrate that a codon-swapping approach allowed a single lentiviral vector to efficiently express ZFNs and should stimulate the use of this viral platform for ZFN-mediated genome editing of primary cells, for both ex vivo or in vivo applications.


Assuntos
Carcinoma Hepatocelular/metabolismo , Códon/genética , Endonucleases/genética , Engenharia Genética/métodos , Vetores Genéticos/administração & dosagem , Glioma/metabolismo , Dedos de Zinco/genética , Animais , Animais Recém-Nascidos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Genoma , Glioma/genética , Glioma/patologia , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar
12.
J Neurosci ; 33(47): 18672-85, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24259588

RESUMO

The immunoreceptor-associated protein CD3ζ is known for its role in immunity and has also been implicated in neuronal development and synaptic plasticity. However, the mechanism by which CD3ζ regulates synaptic transmission remains unclear. In this study, we showed that mice lacking CD3ζ exhibited defects in spatial learning and memory as examined by the Barnes maze and object location memory tasks. Given that peripheral T cells have been shown to support cognitive functions and neural plasticity, we generated CD3ζ(-/-) mice in which the peripheral T cells were repopulated to a normal level by syngeneic bone marrow transplantation. Using this approach, we showed that T-cell replenishment in CD3ζ(-/-) mice did not restore spatial memory defects, suggesting that the cognitive deficits in CD3ζ(-/-) mice were most likely mediated through a T-cell-independent mechanism. In support of this idea, we showed that CD3ζ proteins were localized to glutamatergic postsynaptic sites, where they interacted with the NMDAR subunit GluN2A. Loss of CD3ζ in brain decreased GluN2A-PSD95 association and GluN2A synaptic localization. This effect was accompanied by a reduced interaction of GluN2A with the key NMDAR downstream signaling protein calcium/calmodulin-dependent protein kinase II (CaMKII). Using the glycine-induced, NMDA-dependent form of chemical long-term potentiation (LTP) in cultured cortical neurons, we showed that CD3ζ was required for activity-dependent CaMKII autophosphorylation and for the synaptic recruitment of the AMPAR subunit GluA1. Together, these results support the model that the procognitive function of CD3ζ may be mediated through its involvement in the NMDAR downstream signaling pathway leading to CaMKII-dependent LTP induction.


Assuntos
Complexo CD3/metabolismo , Transtornos da Memória/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Linfócitos T/patologia , Animais , Transplante de Medula Óssea , Complexo CD3/genética , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Embrião de Mamíferos , Regulação da Expressão Gênica/genética , Glicina/farmacologia , Antígenos Comuns de Leucócito/genética , Aprendizagem em Labirinto , Transtornos da Memória/fisiopatologia , Transtornos da Memória/cirurgia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...