Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2317078121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466848

RESUMO

Covalent bonding interactions determine the energy-momentum (E-k) dispersion (band structure) of solid-state materials. Here, we show that noncovalent interactions can modulate the E-k dispersion near the Fermi level of a low-dimensional nanoscale conductor. We demonstrate that low energy band gaps may be opened in metallic carbon nanotubes through polymer wrapping of the nanotube surface at fixed helical periodicity. Electronic spectral, chiro-optic, potentiometric, electronic device, and work function data corroborate that the magnitude of band gap opening depends on the nature of the polymer electronic structure. Polymer dewrapping reverses the conducting-to-semiconducting phase transition, restoring the native metallic carbon nanotube electronic structure. These results address a long-standing challenge to develop carbon nanotube electronic structures that are not realized through disruption of π conjugation, and establish a roadmap for designing and tuning specialized semiconductors that feature band gaps on the order of a few hundred meV.

2.
J Phys Chem Lett ; 14(45): 10271-10277, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37939254

RESUMO

The chirality-induced spin selectivity (CISS) effect allows thin-film layers of chiral conjugated molecules to function as spin filters at ambient temperature. Through solvent-modulated dropcasting of chiral l- and d-perylene diimide (PDI) monomeric building blocks, two types of aggregate morphologies, nanofibers and nanodonuts, may be realized. Spin-diode behavior is evidenced in the nanodonut structures. Stacked PDI units, which form the conjugated core of these nanostructures, dominate the nanodonut-Au electrode contact; in contrast, the AFM tip contacts largely the high-resistance solubilizing alkyl chains of the chiral monomers that form these nanodonuts. Current-voltage responses of the nanodonuts, measured by magnetic conductive AFM (mC-AFM), demonstrate substantial spin polarizations as well as spin current rectification ratios (>10) that exceed the magnitudes of those determined to date for other chiral nanoscale systems. These results underscore the potential for chiral nanostructures, featuring asymmetric molecular junctions, to enable CISS-based nanoscale spin current rectifiers.

3.
Nano Lett ; 23(6): 2100-2106, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36853199

RESUMO

Printing thin-film transistors (TFTs) using nanomaterials is a promising approach for future electronics. Yet, most inks rely on environmentally harmful solvents for solubilizing and postprint processing the nanomaterials. In this work, we demonstrate water-only TFTs printed from all-carbon inks of semiconducting carbon nanotubes (CNTs), conducting graphene, and insulating crystalline nanocellulose (CNC). While suspending these nanomaterials into aqueous inks is readily achieved, printing the inks into thin films of sufficient surface coverage and in multilayer stacks to form TFTs has proven elusive without high temperatures, hazardous chemicals, and/or lengthy postprocessing. Using aerosol jet printing, our approach involves a maximum temperature of 70 °C and no hazardous chemicals─all inks are aqueous and only water is used for processing. An intermittent rinsing technique was utilized to address the surface adhesion challenges that limit film density of printed aqueous CNTs. These findings provide promising steps toward an environmentally friendly realization of thin-film electronics.

4.
Nanoscale ; 14(45): 16845-16856, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36331392

RESUMO

Printed carbon nanotube thin-film transistors (CNT-TFTs) are candidates for flexible electronics with printability on a wide range of substrates. Among the layers comprising a CNT-TFT, the gate dielectric has proven most difficult to additively print owing to challenges in film uniformity, thickness, and post-processing requirements. Printed ionic dielectrics show promise for addressing these issues and yielding devices that operate at low voltages thanks to their high-capacitance electric double layers. However, the printing of ionic dielectrics in their various compositions is not well understood, nor is the impact of certain stresses on these materials. In this work, we studied three compositionally distinct ionic dielectrics in fully printed CNT-TFTs: the polar-fluorinated polymer elastomer PVDF-HFP; an ion gel consisting of triblock polymer PS-PMMA-PS and ionic liquid EMIM-TFSI; and crystalline nanocellulose (CNC) with a salt concentration of 0.05%. Although ion gel has been thoroughly studied, e-PVDF-HFP and CNC printing are relatively new and this study provides insights into their ink formulation, print processing, and performance as gate dielectrics. Using a consistent aerosol jet printing approach, each ionic dielectric was printed into similar CNT-TFTs, allowing for direct comparison through extensive characterization, including mechanical and electrical stress tests. The ionic dielectrics were found to have distinct operational dependencies based on their compositional and ionic attributes. Overall, the results reveal a number of trade-offs that must be managed when selecting a printable ionic dielectric, with CNC showing the strongest performance for low-voltage operation but the ion gel and elastomer exhibiting better stability under bias and mechanical stresses.

5.
J Am Chem Soc ; 144(34): 15457-15461, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35993849

RESUMO

Control of the singlet-triplet energy gap (ΔEST) is central to realizing productive energy conversion reactions, photochemical reaction trajectories, and emergent applications that exploit molecular spin physics. Despite this, no systematic methods have been defined to tune ΔEST in simple molecular frameworks, let alone by an approach that also holds chromophore size and electronic structural parameters (such as the HOMO-LUMO gap) constant. Using a combination of molecular design, photophysical and potentiometric experiments, and quantum chemical analyses, we show that the degree of electron-electron repulsion in excited singlet and triplet states may be finely controlled through the substitution pattern of a simple porphyrin absorber, enabling regulation of relative electronically excited singlet and triplet state energies by the designed restriction of the electron-electron Coulomb (J) and exchange (K) interaction magnitudes. This approach modulates the ΔEST magnitude by controlling the densities of state in the occupied and virtual molecular orbital manifolds, natural transition orbital polarization, and the relative contributions of one electron transitions involving select natural transition orbital pairs. This road map, which regulates electron density overlaps in the occupied and virtual states that define the singlet and triplet wave functions of these chromophores, enables new approaches to preserve excitation energy despite intersystem crossing.


Assuntos
Elétrons , Porfirinas , Porfirinas/química
6.
J Am Chem Soc ; 144(14): 6298-6310, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353523

RESUMO

Understanding how the complex interplay among excitonic interactions, vibronic couplings, and reorganization energy determines coherence-enabled transport mechanisms is a grand challenge with both foundational implications and potential payoffs for energy science. We use a combined experimental and theoretical approach to show how a modest change in structure may be used to modify the exciton delocalization, tune electronic and vibrational coherences, and alter the mechanism of exciton transfer in covalently linked cofacial Zn-porphyrin dimers (meso-beta linked ABm-ß and meso-meso linked AAm-m). While both ABm-ß and AAm-m feature zinc porphyrins linked by a 1,2-phenylene bridge, differences in the interporphyrin connectivity set the lateral shift between macrocycles, reducing electronic coupling in ABm-ß and resulting in a localized exciton. Pump-probe experiments show that the exciton dynamics is faster by almost an order of magnitude in the strongly coupled AAm-m dimer, and two-dimensional electronic spectroscopy (2DES) identifies a vibronic coherence that is absent in ABm-ß. Theoretical studies indicate how the interchromophore interactions in these structures, and their system-bath couplings, influence excitonic delocalization and vibronic coherence-enabled rapid exciton transport dynamics. Real-time path integral calculations reproduce the exciton transfer kinetics observed experimentally and find that the linking-modulated exciton delocalization strongly enhances the contribution of vibronic coherences to the exciton transfer mechanism, and that this coherence accelerates the exciton transfer dynamics. These benchmark molecular design, 2DES, and theoretical studies provide a foundation for directed explorations of nonclassical effects on exciton dynamics in multiporphyrin assemblies.


Assuntos
Porfirinas , Eletrônica , Modelos Teóricos , Porfirinas/química , Análise Espectral , Vibração
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115404

RESUMO

A critical spintronics challenge is to develop molecular wires that render efficiently spin-polarized currents. Interplanar torsional twisting, driven by chiral binucleating ligands in highly conjugated molecular wires, gives rise to large near-infrared rotational strengths. The large scalar product of the electric and magnetic dipole transition moments ([Formula: see text]), which are evident in the low-energy absorptive manifolds of these wires, makes possible enhanced chirality-induced spin selectivity-derived spin polarization. Magnetic-conductive atomic force microscopy experiments and spin-Hall devices demonstrate that these designs point the way to achieve high spin selectivity and large-magnitude spin currents in chiral materials.

8.
ACS Omega ; 6(42): 27865-27873, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34722986

RESUMO

An investigation of spin and conformational dynamics in a series of symmetric Cu-Cu porphyrin dimer solutions is presented using electron paramagnetic resonance (EPR) spectroscopy. Previous spectral simulations focused on the isotropic exchange interaction (J avg) between the Cu centers. In this work, an additional line broadening parameter (J mod) is explored in detail via variable temperature X-band EPR in liquid solution for several different structures. The J mod phenomenon is due to fluctuations in the spin exchange interaction caused by conformational motion of the porphyrin planes. The J mod parameter scales with the inverse of the rotational barriers that determine the Boltzmann-weighted torsional angle distribution between neighboring porphyrin planes. Arrhenius plots allow for extraction of the activation energies for rotation, which are 5.77, 2.84, and 5.31 kJ/mol for ethyne-bridged (porphinato)copper(II)-(porphinato)copper(II), butadiyne-bridged (porphinato)copper(II)-(porphinato)copper(II), and ethyne-bridged (porphinato)copper(II)-(porphinato)zinc(II)-(porphinato)copper(II) complexes, respectively. DFT calculations of these torsional barriers match well with the experimental results. This is the first report of a J mod analysis within a highly anisotropic hyperfine field and demonstrates the utility of the theory for extraction of dynamic information.

9.
Inorg Chem ; 60(20): 15404-15412, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34585577

RESUMO

A new series of strongly coupled oscillators based upon (porphinato)Pd, (porphinato)Pt, and bis(terpyridyl)ruthenium(II) building blocks is described. These RuPPd, RuPPt, RuPPdRu, and RuPPtRu chromophores feature bis(terpyridyl)Ru(II) moieties connected to the (porphinato)metal unit via an ethyne linker that bridges the 4'-terpyridyl and porphyrin macrocycle meso-carbon positions. Pump-probe transient optical data demonstrate sub-picosecond excited singlet-to-triplet-state relaxation. The relaxed lowest-energy triplet (T1) excited states of these chromophores feature absorption manifolds that span the 800-1200 nm spectral region, microsecond triplet-state lifetimes, and large absorptive extinction coefficients [ε(T1 → Tn) > 4 × 104 M-1 cm-1]. Dynamic hyperpolarizability (ßλ) values were determined from hyper-Rayleigh light scattering (HRS) measurements carried out at several incident irradiation wavelengths over the 800-1500 nm spectral region. Relative to benchmark RuPZn and RuPZnRu chromophores which showed large ßHRS values over the 1200-1600 nm range, RuPPd, RuPPt, RuPPdRu, and RuPPtRu displayed large ßHRS values over the 850-1200 nm region. Generalized Thomas-Kuhn sum (TKS) rules and experimental hyperpolarizability values were utilized to determine excited state-to-excited state transition dipole terms from experimental electronic absorption data and thus assessed frequency-dependent ßλ values, including two- and three-level contributions for both ßzzz and ßxzx tensor components to the RuPPd, RuPPt, RuPPdRu, and RuPPtRu hyperpolarizability spectra. These analyses qualitatively rationalize how the ßzzz and ßxzx tensor elements influence the observed irradiation wavelength-dependent hyperpolarizability magnitudes. The TKS analysis suggests that supermolecules related to RuPPd, RuPPt, RuPPdRu, and RuPPtRu will likely feature intricate dependences of experimentally determined ßHRS values as a function of irradiation wavelength that derive from substantial singlet-triplet mixing, and complex interactions among multiple different ß tensor components that modulate the long wavelength regime of the nonlinear optical response.

10.
J Phys Chem C Nanomater Interfaces ; 125(21): 11782-11790, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34276860

RESUMO

The photoexcited triplet states of porphyrin architectures are of significant interest in a wide range of fields including molecular wires, nonlinear optics, and molecular spintronics. Electron paramagnetic resonance (EPR) is a key spectroscopic tool in the characterization of these transient paramagnetic states singularly well suited to quantify spin delocalization. Previous work proposed a means of extracting the absolute signs of the zero-field splitting (ZFS) parameters, D and E, and triplet sublevel populations by transient continuous wave, hyperfine measurements, and magnetophotoselection. Here, we present challenges of this methodology for a series of meso-perfluoroalkyl-substituted zinc porphyrin monomers with orthorhombic symmetries, where interpretation of experimental data must proceed with caution and the validity of the assumptions used in the analysis must be scrutinized. The EPR data are discussed alongside quantum chemical calculations, employing both DFT and CASSCF methodologies. Despite some success of the latter in quantifying the magnitude of the ZFS interaction, the results clearly provide motivation to develop improved methods for ZFS calculations of highly delocalized organic triplet states.

11.
Nat Electron ; 4(4): 261-268, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35372789

RESUMO

Electronic waste can lead to the accumulation of environmentally and biologically toxic materials and is a growing global concern. Developments in transient electronics-in which devices are designed to disintegrate after use-have focused on increasing the biocompatibility, whereas efforts to develop methods to recapture and reuse materials have focused on conducting materials, while neglecting other electronic materials. Here, we report all-carbon thin-film transistors made using crystalline nanocellulose as a dielectric, carbon nanotubes as a semiconductor, graphene as a conductor and paper as a substrate. A crystalline nanocellulose ink is developed that is compatible with nanotube and graphene inks and can be written onto a paper substrate using room-temperature aerosol jet printing. The addition of mobile sodium ions to the dielectric improves the thin-film transistor on-current (87 µA mm-1) and subthreshold swing (132 mV dec-1), and leads to a faster voltage sweep rate (by around 20 times) than without ions. The devices also exhibit stable performance over six months in ambient conditions and can be controllably decomposed, with the graphene and carbon nanotube inks recaptured for recycling (>95% recapture efficiency) and reprinting of new transistors. We demonstrate the utility of the thin-film transistors by creating a fully printed, paper-based biosensor for lactate sensing.

12.
J Am Chem Soc ; 143(1): 252-259, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373215

RESUMO

De novo protein design offers the opportunity to test our understanding of how metalloproteins perform difficult transformations. Attaining high-resolution structural information is critical to understanding how such designs function. There have been many successes in the design of porphyrin-binding proteins; however, crystallographic characterization has been elusive, limiting what can be learned from such studies as well as the extension to new functions. Moreover, formation of highly oxidizing high-valent intermediates poses design challenges that have not been previously implemented: (1) purposeful design of substrate/oxidant access to the binding site and (2) limiting deleterious oxidation of the protein scaffold. Here we report the first crystallographically characterized porphyrin-binding protein that was programmed to not only bind a synthetic Mn-porphyrin but also maintain binding site access to form high-valent oxidation states. We explicitly designed a binding site with accessibility to dioxygen units in the open coordination site of the Mn center. In solution, the protein is capable of accessing a high-valent Mn(V)-oxo species which can transfer an O atom to a thioether substrate. The crystallographic structure is within 0.6 Å of the design and indeed contained an aquo ligand with a second water molecule stabilized by hydrogen bonding to a Gln side chain in the active site, offering a structural explanation for the observed reactivity.


Assuntos
Hemeproteínas/química , Manganês/química , Metaloporfirinas/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Hemeproteínas/genética , Hemeproteínas/metabolismo , Oxirredução , Ligação Proteica , Engenharia de Proteínas , Sulfetos/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(52): 33246-33253, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318174

RESUMO

We describe the de novo design of an allosterically regulated protein, which comprises two tightly coupled domains. One domain is based on the DF (Due Ferri in Italian or two-iron in English) family of de novo proteins, which have a diiron cofactor that catalyzes a phenol oxidase reaction, while the second domain is based on PS1 (Porphyrin-binding Sequence), which binds a synthetic Zn-porphyrin (ZnP). The binding of ZnP to the original PS1 protein induces changes in structure and dynamics, which we expected to influence the catalytic rate of a fused DF domain when appropriately coupled. Both DF and PS1 are four-helix bundles, but they have distinct bundle architectures. To achieve tight coupling between the domains, they were connected by four helical linkers using a computational method to discover the most designable connections capable of spanning the two architectures. The resulting protein, DFP1 (Due Ferri Porphyrin), bound the two cofactors in the expected manner. The crystal structure of fully reconstituted DFP1 was also in excellent agreement with the design, and it showed the ZnP cofactor bound over 12 Å from the dimetal center. Next, a substrate-binding cleft leading to the diiron center was introduced into DFP1. The resulting protein acts as an allosterically modulated phenol oxidase. Its Michaelis-Menten parameters were strongly affected by the binding of ZnP, resulting in a fourfold tighter Km and a 7-fold decrease in kcat These studies establish the feasibility of designing allosterically regulated catalytic proteins, entirely from scratch.


Assuntos
Engenharia de Proteínas , Proteínas Recombinantes/química , Regulação Alostérica , Biocatálise , Coenzimas/metabolismo , Ligantes , Metais/metabolismo , Modelos Moleculares , Oxirredução , Domínios Proteicos , Estrutura Secundária de Proteína
14.
J Phys Chem A ; 124(37): 7411-7415, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32794775

RESUMO

Understanding factors that underpin the signs and magnitudes of electron spin-spin couplings in biradicaloids, especially those that are integrated into highly delocalized electronic structures, promises to inform the design of molecular spintronic systems. Using steady-state and variable temperature electron paramagnetic resonance (EPR) spectroscopy, we examine spin dynamics in symmetric, strongly π-conjugated bis[(porphinato)copper] (bis[PCu]) systems and probe the roles played by atom-specific macrocycle spin density, porphyrin-to-porphyrin linkage topology, and orbital symmetry on the magnitudes of electronic spin-spin couplings over substantial Cu-Cu distances. These studies examine the following: (i) meso-to-meso-linked bis[PCu] systems having oligoyne spacers, (ii) meso-to-meso-bridged bis[PCu] arrays in which the PCu centers are separated by a single ethynyl unit or multiple 5,15-diethynyl(porphinato)zinc(II) units, and (iii) the corresponding ß-to-ß-bridged bis[PCu] structures. EPR data show that, for ß-to-ß-bridged systems and meso-to-meso-linked bis[PCu] structures having oligoyne spacers, a through σ-bond coupling mechanism controls the average exchange interaction (Javg). In contrast, PCu centers separated by a single ethynyl or multiple 5,15-diethynyl(porphinato)zinc(II) units display a phenomenological decay of ln[Javg] versus Cu-Cu σ-bond separation number of ∼0.115 per bond, half as large as for these other compositions, congruent with the importance of π-mediated spin-spin coupling. These disparities derive from effects that trace their origin to the nature of the macrocycle-macrocycle linkage topology and the relative energy of the Cu dx2-y2 singly occupied molecular orbital within the frontier orbital manifold of these electronically delocalized structures. This work provides insight into approaches to tune the extent of spin exchange interactions and distance-dependent electronic spin-spin coupling magnitudes in rigid, highly conjugated biradicaloids.

15.
Proc Natl Acad Sci U S A ; 117(34): 20430-20437, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788361

RESUMO

Exploiting earth-abundant iron-based metal complexes as high-performance photosensitizers demands long-lived electronically excited metal-to-ligand charge-transfer (MLCT) states, but these species suffer typically from femtosecond timescale charge-transfer (CT)-state quenching by low-lying nonreactive metal-centered (MC) states. Here, we engineer supermolecular Fe(II) chromophores based on the bis(tridentate-ligand)metal(II)-ethyne-(porphinato)zinc(II) conjugated framework, previously shown to give rise to highly delocalized low-lying 3MLCT states for other Group VIII metal (Ru, Os) complexes. Electronic spectral, potentiometric, and ultrafast pump-probe transient dynamical data demonstrate that a combination of a strong σ-donating tridentate ligand and a (porphinato)zinc(II) moiety with low-lying π*-energy levels, sufficiently destabilize MC states and stabilize supermolecular MLCT states to realize Fe(II) complexes that express 3MLCT state photophysics reminiscent of their heavy-metal analogs. The resulting Fe(II) chromophore archetype, FeNHCPZn, features a highly polarized CT state having a profoundly extended 3MLCT lifetime (160 ps), 3MLCT phosphorescence, and ambient environment stability. Density functional and domain-based local pair natural orbital coupled cluster [DLPNO-CCSD(T)] theory reveal triplet-state wavefunction spatial distributions consistent with electronic spectroscopic and excited-state dynamical data, further underscoring the dramatic Fe metal-to-extended ligand CT character of electronically excited FeNHCPZn. This design further prompts intense panchromatic absorptivity via redistributing high-energy absorptive oscillator strength throughout the visible spectral domain, while maintaining a substantial excited-state oxidation potential for wide-ranging photochemistry--highlighted by the ability of FeNHCPZn to photoinject charges into a SnO2/FTO electrode in a dye-sensitized solar cell (DSSC) architecture. Concepts enumerated herein afford opportunities for replacing traditional rare-metal-based emitters for solar-energy conversion and photoluminescence applications.

16.
J Phys Chem B ; 124(17): 3437-3440, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32349485
17.
J Phys Chem B ; 124(6): 1033-1048, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31927963

RESUMO

A series of new π-stacked compounds, 1,8-bis(2',5'-dimethoxybenzene-1'-yl)naphthalene (1), 1,4-bis(8'-(2″,5″-dimethoxybenzene-1″-yl)naphthalen-1'-yl)benzene (2), and 1,8-bis(4'-(8″-(2‴,5‴-dimethoxybenzene-1‴-yl)naphthalen-1″-yl)benzene-1'-yl)naphthalene (3), have been synthesized and characterized herein as precursor molecules of monocationic mixed-valence systems (MVSs). The three-dimensional geometries of these compounds were determined by X-ray crystallography. A near-orthogonal alignment of the naphthalene pillaring motif to the dimethoxybenzene redox center, or the phenylene spacer, imposes cofacial alignment of these units in a juxtaposed manner with sub-van der Waals interplanar distances. Cyclic and differential pulse voltammograms reveal that the ΔE values between two sequential oxidation potentials are 0.30, 0.11, and 0.10 V for 1, 2, and 3, respectively. MVSs derived from these compounds are recognized as class II according to the Robin and Day classification. The decay parameter ß, which describes the distance dependence of the squared electronic coupling in the three mixed-valence systems, was experimentally determined via Mulliken-Hush analysis of the intervalence charge transfer band (ß = 0.37 Å-1) and theoretically assessed from charge-resonance contributions derived from DFT computations (ß = 0.37 Å-1). These values are extraordinarily mild, indicating that the electronic interaction between redox centers in the longitudinal direction may be comparable to that in the transverse direction, if the MVS system is appropriately designed.

18.
Chem Sci ; 11(31): 8095-8104, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34123083

RESUMO

High quantum yield NIR fluorophores are rare. Factors that drive low emission quantum yields at long wavelength include the facts that radiative rate constants increase proportional to the cube of the emission energy, while nonradiative rate constants increase in an approximately exponentially with decreasing S0-S1 energy gaps (in accordance with the energy gap law). This work demonstrates how the proquinoidal BTD building blocks can be utilized to minimize the extent of excited-state structural relaxation relative to the ground-state conformation in highly conjugated porphyrin oligomers, and shows that 4-ethynylbenzo[c][1,2,5]thiadiazole (E-BTD) units that terminate meso-to-meso ethyne-bridged (porphinato)zinc (PZnn) arrays, and 4,7-diethynylbenzo[c][1,2,5]thiadiazole (E-BTD-E) spacers that are integrated into the backbone of these compositions, elucidate new classes of impressive NIR fluorophores. We report the syntheses, electronic structural properties, and emissive characteristics of neoteric PZn-(BTD-PZn)n, PZn2-(BTD-PZn2)n, and BTD-PZnn-BTD fluorophores. Absolute fluorescence quantum yield (ϕ f) measurements, acquired using a calibrated integrating-sphere-based measurement system, demonstrate that these supermolecules display extraordinary ϕ f values that range from 10-25% in THF solvent, and between 28-36% in toluene solvent over the 700-900 nm window of the NIR. These studies underscore how the regulation of proquinoidal conjugation motifs can be exploited to drive excited-state dynamical properties important for high quantum yield long-wavelength fluorescence emission.

19.
J Phys Chem B ; 123(49): 10456-10462, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31710233

RESUMO

We examine the relative magnitudes of electronic coupling HDA in two face-to-face rigid and diastereomeric (porphinato)zinc(II)-quinone (PZn-Q) assemblies, 1ß-ZnA and 1ß-ZnB, in which the six quinonyl carbon atoms lie in virtually identical arrangements relative to the PZn plane at sub-van der Waals donor-acceptor (D-A) interplanar separations. Steady-state and time-resolved transient optical data and computational studies show that minor differences in relative D-A cofacial orientation give rise to disparate HDA magnitudes for both photoinduced charge separation (CS) and thermal charge recombination (CR). Time-dependent density functional theory (TDDFT) computations illuminate the nature of direct charge transfer states and the electronic structural factors that give rise to these differential HDAs. These data show more extensive mixing of locally excited (LE) and CS states in 1ß-ZnA relative to 1ß-ZnB and that these HDA differences track the magnitudes of electronic coupling matrix elements determined from steady-state electronic spectral data and thermal CR rate constants measured via pump-probe spectroscopy. Collectively, this work shows that electron transfer dynamics may be manipulated in cofacial D-A systems, even at sub-van der Waals contact, provided that conformational rigidity precludes structural fluctuations that modulate D-A interactions on the charge transfer time scale.


Assuntos
Benzoquinonas/química , Teoria da Densidade Funcional , Elétrons , Porfirinas/química , Fatores de Tempo
20.
J Am Chem Soc ; 141(37): 14707-14711, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31411873

RESUMO

Spin based properties, applications, and devices are typically related to inorganic ferromagnetic materials. The development of organic materials for spintronic applications has long been encumbered by its reliance on ferromagnetic electrodes for polarized spin injection. The discovery of the chirality-induced spin selectivity (CISS) effect, in which chiral organic molecules serve as spin filters, defines a marked departure from this paradigm because it exploits soft materials, operates at ambient temperature, and eliminates the need for a magnetic electrode. To date, the CISS effect has been explored exclusively in molecular insulators. Here we combine chiral molecules, which serve as spin filters, with molecular wires that despite not being chiral, function to preserve spin polarization. Self-assembled monolayers (SAMs) of right-handed helical (l-proline)8 (Pro8) and corresponding peptides, N-terminal conjugated to (porphinato)zinc or meso-to-meso ethyne-bridged (porphinato)zinc structures (Pro8PZnn), were interrogated via magnetic conducting atomic force microscopy (mC-AFM), spin-dependent electrochemistry, and spin Hall devices that measure the spin polarizability that accompanies the charge polarization. These data show that chiral molecules are not required to transmit spin-polarized currents made possible by the CISS mechanism. Measured Hall voltages for Pro8PZn1-3 substantially exceed that determined for the Pro8 control and increase dramatically as the conjugation length of the achiral PZnn component increases; mC-AFM data underscore that measured spin selectivities increase with an increasing Pro8PZn1-3 N-terminal conjugation. Because of these effects, spin-dependent electrochemical data demonstrate that spin-polarized currents, which trace their genesis to the chiral Pro8 moiety, propagate with no apparent dephasing over the augmented Pro8PZnn length scales, showing that spin currents may be transmitted over molecular distances that greatly exceed the length of the chiral moiety that makes possible the CISS effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...