Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979297

RESUMO

Protein is an essential macronutrient and variations in its source and quantity have been shown to impact long-term health outcomes. Differential health impacts of dietary proteins from various sources are likely driven by differences in their digestibility by the host and subsequent availability to the intestinal microbiota. However, our current understanding regarding the fate of dietary proteins from different sources in the gut, specifically how component proteins within these sources interact with the host and the gut microbiota, is limited. To determine which dietary proteins are efficiently digested by the host and which proteins escape host digestion and are used by the gut microbiota, we used high-resolution mass spectrometry to quantify the proteins that make up different dietary protein sources before and after digestion in germ-free and conventionally raised mice. Contrary to expectation, we detected proteins from all sources in fecal samples of both germ-free and conventional mice suggesting that even protein sources with a high digestive efficiency make it in part to the colon where they can serve as a substrate for the microbiota. Additionally, we found clear patterns where specific component proteins of the dietary protein sources were used as a preferred substrate by the microbiota or were not as accessible to the microbiota. We found that specific proteins with functions that could impact host health and physiology were differentially enriched in germ-free or conventionally raised mice. These findings reveal large differences in the fate of dietary protein from various sources in the gut that could explain some of their differential health impacts.

2.
J Proteome Res ; 23(6): 2000-2012, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38752739

RESUMO

Biological interpretation of untargeted LC-MS-based metabolomics data depends on accurate compound identification, but current techniques fall short of identifying most features that can be detected. The human fecal metabolome is complex, variable, incompletely annotated, and serves as an ideal matrix to evaluate novel compound identification methods. We devised an experimental strategy for compound annotation using multidimensional chromatography and semiautomated feature alignment and applied these methods to study the fecal metabolome in the context of fecal microbiota transplantation (FMT) for recurrent C. difficile infection. Pooled fecal samples were fractionated using semipreparative liquid chromatography and analyzed by an orthogonal LC-MS/MS method. The resulting spectra were searched against commercial, public, and local spectral libraries, and annotations were vetted using retention time alignment and prediction. Multidimensional chromatography yielded more than a 2-fold improvement in identified compounds compared to conventional LC-MS/MS and successfully identified several rare and previously unreported compounds, including novel fatty-acid conjugated bile acid species. Using an automated software-based feature alignment strategy, most metabolites identified by the new approach could be matched to features that were detected but not identified in single-dimensional LC-MS/MS data. Overall, our approach represents a powerful strategy to enhance compound identification and biological insight from untargeted metabolomics data.


Assuntos
Transplante de Microbiota Fecal , Fezes , Metaboloma , Metabolômica , Espectrometria de Massas em Tandem , Humanos , Fezes/microbiologia , Fezes/química , Cromatografia Líquida/métodos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/metabolismo , Clostridioides difficile/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/análise , Espectrometria de Massa com Cromatografia Líquida
3.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617292

RESUMO

The source of protein in a persons diet affects their total life expectancy. However, the mechanisms by which dietary protein sources differentially impact human health and life expectancy are poorly understood. Dietary choices have major impacts on the composition and function of the intestinal microbiota that ultimately mediate host health. This raises the possibility that health outcomes based on dietary protein sources might be driven by interactions between dietary protein and the gut microbiota. In this study, we determine the effects of seven different sources of dietary protein on the gut microbiota in mice. We apply an integrated metagenomics-metaproteomics approach to simultaneously investigate the effects of these dietary protein sources on the gut microbiotas composition and function. The protein abundances measured by metaproteomics can provide microbial species abundances, and evidence for the phenotype of microbiota members on the molecular level because measured proteins allow us to infer the metabolic and physiological processes used by a microbial community. We showed that dietary protein source significantly altered the species composition and overall function of the gut microbiota. Different dietary protein sources led to changes in the abundance of microbial amino acid degrading proteins and proteins involved in the degradation of glycosylations on dietary protein. In particular, brown rice and egg white protein increased the abundance of amino acid degrading enzymes and egg white protein increased the abundance of bacteria and proteins usually associated with the degradation of the intestinal mucus barrier. These results show that dietary protein source can change the gut microbiotas metabolism, which could have major implications in the context of gut microbiota mediated diseases.

4.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370838

RESUMO

Recurrent C. difficile infection (rCDI) is an urgent public health threat for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms which mediate a successful FMT are not well understood. Here we use longitudinal stool samples collected from patients undergoing FMT to evaluate changes in the microbiome, metabolome, and lipidome after successful FMTs. We show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae, which encode carnitine metabolism genes, and Lachnospiraceae, which encode bile salt hydrolases and baiA genes. LC-IMS-MS revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here we define the structural and functional changes in successful FMTs. This information will help guide targeted Live Biotherapeutic Product development for the treatment of rCDI and other intestinal diseases.

5.
Microbiol Spectr ; 12(1): e0357623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018975

RESUMO

IMPORTANCE: Recent work on bile salt hydrolases (BSHs) in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it are not well understood. In this study, we set out to define if and how Bacteroides thetaiotaomicron (B. theta) uses its BSHs and hydroxysteroid dehydrogenase to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid-altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci. This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides thetaiotaomicron/genética , Transcriptoma , Ácidos e Sais Biliares , Bacteroides/genética , Bacteroides/metabolismo , Polissacarídeos/metabolismo , Bactérias/genética
6.
Anal Chem ; 95(41): 15357-15366, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796494

RESUMO

Bile acids play key roles in nutrient uptake, inflammation, signaling, and microbiome composition. While previous bile acid analyses have primarily focused on profiling 5 canonical primary and secondary bile acids and their glycine and taurine amino acid-bile acid (AA-BA) conjugates, recent studies suggest that many other microbial conjugated bile acids (or MCBAs) exist. MCBAs are produced by the gut microbiota and serve as biomarkers, providing information about early disease onset and gut health. Here we analyzed 8 core bile acids synthetically conjugated with 22 proteinogenic and nonproteogenic amino acids totaling 176 MCBAs. Since many of the conjugates were isomeric and only 42 different m/z values resulted from the 176 MCBAs, a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) was used for their separation. Their molecular characteristics were then used to create an in-house extended bile acid library for a combined total of 182 unique compounds. Additionally, ∼250 rare bile acid extracts were also assessed to provide additional resources for bile acid profiling and identification. This library was then applied to healthy mice dosed with antibiotics and humans having fecal microbiota transplantation (FMT) to assess the MCBA presence and changes in the gut before and after each perturbation.


Assuntos
Aminoácidos , Ácidos e Sais Biliares , Humanos , Camundongos , Animais , Isomerismo , Espectrometria de Massas , Esteroides
7.
J Bacteriol ; 205(9): e0018023, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695856

RESUMO

Clostridioides difficile is a Gram-positive, spore-forming anaerobe that causes clinical diseases ranging from diarrhea and pseudomembranous colitis to toxic megacolon and death. C. difficile infection (CDI) is associated with antibiotic usage, which disrupts the indigenous gut microbiota and causes the loss of microbial-derived secondary bile acids that normally provide protection against C. difficile colonization. Previous work has shown that the secondary bile acid lithocholate (LCA) and its epimer isolithocholate (iLCA) have potent inhibitory activity against clinically relevant C. difficile strains. To further characterize the mechanisms by which LCA and its epimers iLCA and isoallolithocholate (iaLCA) inhibit C. difficile, we tested their minimum inhibitory concentration against C. difficile R20291 and a commensal gut microbiota panel. We also performed a series of experiments to determine the mechanism of action by which LCA and its epimers inhibit C. difficile through bacterial killing and effects on toxin expression and activity. Additionally, we tested the cytotoxicity of these bile acids through Caco-2 cell apoptosis and viability assays to gauge their effects on the host. Here, we show that the epimers iLCA and iaLCA strongly inhibit C. difficile growth in vitro while sparing most commensal Gram-negative gut microbes. We also show that iLCA and iaLCA have bactericidal activity against C. difficile, and these epimers cause significant bacterial membrane damage at subinhibitory concentrations. Finally, we observe that iLCA and iaLCA decrease the expression of the large cytotoxin tcdA, while LCA significantly reduces toxin activity. Although iLCA and iaLCA are both epimers of LCA, they have distinct mechanisms for inhibiting C. difficile. LCA epimers, iLCA and iaLCA, represent promising compounds that target C. difficile with minimal effects on members of the gut microbiota that are important for colonization resistance. IMPORTANCE In the search for a novel therapeutic that targets Clostridioides difficile, bile acids have become a viable solution. Epimers of bile acids are particularly attractive as they may provide protection against C. difficile while leaving the indigenous gut microbiota largely unaltered. This study shows that LCA epimers isolithocholate (iLCA) and LCA epimers isoallolithocholate (iaLCA) specifically are potent inhibitors of C. difficile, affecting key virulence factors including growth, toxin expression, and activity. As we move toward the use of bile acids as therapeutics, further work will be required to determine how best to deliver these bile acids to a target site within the host intestinal tract.


Assuntos
Clostridioides difficile , Microbioma Gastrointestinal , Humanos , Virulência , Células CACO-2 , Ácidos e Sais Biliares/farmacologia , Ácido Litocólico
8.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37425690

RESUMO

Bacteroides thetaiotaomicron (B. theta) is a Gram-negative gut bacterium that encodes enzymes that alter the bile acid pool in the gut. Primary bile acids are synthesized by the host liver and are modified by gut bacteria. B. theta encodes two bile salt hydrolases (BSHs), as well as a hydroxysteroid dehydrogenase (HSDH). We hypothesize that B. theta modifies the bile acid pool in the gut to provide a fitness advantage for itself. To investigate each gene's role, different combinations of genes encoding bile acid altering enzymes (bshA, bshB, and hsdhA) were knocked out by allelic exchange, including a triple KO. Bacterial growth and membrane integrity assays were done in the presence and absence of bile acids. To explore if B. theta's response to nutrient limitation changes due to the presence of bile acid altering enzymes, RNASeq analysis of WT and triple KO strains in the presence and absence of bile acids was done. WT B. theta is more sensitive to deconjugated bile acids (CA, CDCA, and DCA) compared to the triple KO, which also decreased membrane integrity. The presence of bshB is detrimental to growth in conjugated forms of CDCA and DCA. RNA-Seq analysis also showed bile acid exposure impacts multiple metabolic pathways in B. theta, but DCA significantly increases expression of many genes in carbohydrate metabolism, specifically those in polysaccharide utilization loci or PULs, in nutrient limited conditions. This study suggests that bile acids B. theta encounters in the gut may signal the bacteria to increase or decrease its utilization of carbohydrates. Further study looking at the interactions between bacteria, bile acids, and the host may inform rationally designed probiotics and diets to ameliorate inflammation and disease. Importance: Recent work on BSHs in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it is not well understood. In this study we set out to define if and how B. theta uses its BSHs and HSDH to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci (PULs). This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut. This work will aid in our understanding of how to rationally manipulate the bile acid pool and the microbiota to exploit carbohydrate metabolism in the context of inflammation and other GI diseases.

9.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333153

RESUMO

Compound identification is an essential task in the workflow of untargeted metabolomics since the interpretation of the data in a biological context depends on the correct assignment of chemical identities to the features it contains. Current techniques fall short of identifying all or even most observable features in untargeted metabolomics data, even after rigorous data cleaning approaches to remove degenerate features are applied. Hence, new strategies are required to annotate the metabolome more deeply and accurately. The human fecal metabolome, which is the focus of substantial biomedical interest, is a more complex, more variable, yet lesser-investigated sample matrix compared to widely studied sample types like human plasma. This manuscript describes a novel experimental strategy using multidimensional chromatography to facilitate compound identification in untargeted metabolomics. Pooled fecal metabolite extract samples were fractionated using offline semi-preparative liquid chromatography. The resulting fractions were analyzed by an orthogonal LC-MS/MS method, and the data were searched against commercial, public, and local spectral libraries. Multidimensional chromatography yielded more than a 3-fold improvement in identified compounds compared to the typical single-dimensional LC-MS/MS approach and successfully identified several rare and novel compounds, including atypical conjugated bile acid species. Most features identified by the new approach could be matched to features that were detectable but not identifiable in the original single-dimension LC-MS data. Overall, our approach represents a powerful strategy for deeper annotation of the metabolome that can be implemented with commercially-available instrumentation, and should apply to any dataset requiring deeper annotation of the metabolome.

10.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333390

RESUMO

C. difficile infection (CDI) is associated with antibiotic usage, which disrupts the indigenous gut microbiota and causes the loss of microbial derived secondary bile acids that normally provide protection against C. difficile colonization. Previous work has shown that the secondary bile acid lithocholate (LCA) and its epimer isolithocholate (iLCA) have potent inhibitory activity against clinically relevant C. difficile strains. To further characterize the mechanisms by which LCA and its epimers iLCA and isoallolithocholate (iaLCA) inhibit C. difficile, we tested their minimum inhibitory concentration (MIC) against C. difficile R20291, and a commensal gut microbiota panel. We also performed a series of experiments to determine the mechanism of action by which LCA and its epimers inhibit C. difficile through bacterial killing and effects on toxin expression and activity. Here we show that epimers iLCA and iaLCA strongly inhibit C. difficile growth in vitro while sparing most commensal Gram-negative gut microbes. We also show that iLCA and iaLCA have bactericidal activity against C. difficile, and these epimers cause significant bacterial membrane damage at subinhibitory concentrations. Finally, we observe that iLCA and iaLCA decrease the expression of the large cytotoxin tcdA while LCA significantly reduces toxin activity. Although iLCA and iaLCA are both epimers of LCA, they have distinct mechanisms for inhibiting C. difficile . LCA epimers, iLCA and iaLCA, represent promising compounds that target C. difficile with minimal effects on members of the gut microbiota that are important for colonization resistance. Importance: In the search for a novel therapeutic that targets C. difficile , bile acids have become a viable solution. Epimers of bile acids are particularly attractive as they may provide protection against C. difficile while leaving the indigenous gut microbiota largely unaltered. This study shows that iLCA and iaLCA specifically are potent inhibitors of C. difficile , affecting key virulence factors including growth, toxin expression and activity. As we move toward the use of bile acids as therapeutics, further work will be required to determine how best to deliver these bile acids to a target site within the host intestinal tract.

11.
Proc Natl Acad Sci U S A ; 120(19): e2301252120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126691

RESUMO

Intestinal bile acids play an essential role in the Clostridioides difficile lifecycle having been shown in vitro to modulate various aspects of pathogenesis, including spore germination, vegetative growth, and more recently the action of the primary virulence determinant, TcdB. Here, we investigated whether physiological levels of the total pool of intestinal bile acids in mice and humans protect against TcdB action. Small molecules extracted from the lumenal contents of the small intestine, cecum, colon, and feces were found to inhibit TcdB in accordance with the differential amounts of total bile acids in each compartment. Extracts from antibiotic-treated and germ-free mice, despite harboring dramatically altered bile acid profiles, unexpectedly also prevented TcdB-induced cell rounding to similar extents. We show that protection, however, is surmountable and can be overcome at higher doses of TcdB-typical to those seen during severe C. difficile infection-suggesting that the protective properties of intestinal bile acids are operant primarily under low to moderate toxin levels. Taken together, these findings demonstrate a role for intestinal bile acids in attenuating virulence, provide insights into asymptomatic carriage of toxigenic C. difficile, and inform strategies to manipulate bile acid levels for therapeutic benefit.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Humanos , Camundongos , Animais , Ácidos e Sais Biliares , Infecções por Clostridium/patologia , Intestinos/patologia , Proteínas de Bactérias
12.
Nat Microbiol ; 8(4): 611-628, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914755

RESUMO

Bile acids (BAs) mediate the crosstalk between human and microbial cells and influence diseases including Clostridioides difficile infection (CDI). While bile salt hydrolases (BSHs) shape the BA pool by deconjugating conjugated BAs, the basis for their substrate selectivity and impact on C. difficile remain elusive. Here we survey the diversity of BSHs in the gut commensals Lactobacillaceae, which are commonly used as probiotics, and other members of the human gut microbiome. We structurally pinpoint a loop that predicts BSH preferences for either glycine or taurine substrates. BSHs with varying specificities were shown to restrict C. difficile spore germination and growth in vitro and colonization in pre-clinical in vivo models of CDI. Furthermore, BSHs reshape the pool of microbial conjugated bile acids (MCBAs) in the murine gut, and these MCBAs can further restrict C. difficile virulence in vitro. The recognition of conjugated BAs by BSHs defines the resulting BA pool, including the expansive MCBAs. This work provides insights into the structural basis of BSH mechanisms that shape the BA landscape and promote colonization resistance against C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Camundongos , Humanos , Clostridioides , Ácidos e Sais Biliares , Amidoidrolases
13.
Biol Sex Differ ; 13(1): 61, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274154

RESUMO

BACKGROUND: Bile acids are known to be genotoxic and contribute to colorectal cancer (CRC). However, the link between CRC tumor bile acids to tumor location, patient sex, microbiome, immune-regulatory cells, and prognosis is not clear. METHODS: We conducted bile acid analysis using targeted liquid chromatography-mass spectrometry (LC-MS) on tumor tissues from CRC patients (n = 228) with survival analysis. We performed quantitative immunofluorescence (QIF) on tumors to examine immune cells. RESULTS: Twelve of the bile acids were significantly higher in right-sided colon tumors compared to left-sided colon tumors. Furthermore, in male patients, right-sided colon tumors had elevated secondary bile acids (deoxycholic acid, lithocholic acid, ursodeoxycholic acid) compared to left-sided colon tumors, but this difference between tumors by location was not observed in females. A high ratio of glycoursodeoxycholic to ursodeoxycholic was associated with 5-year overall survival (HR = 3.76, 95% CI = 1.17 to 12.1, P = 0.026), and a high ratio of glycochenodeoxycholic acid to chenodeoxycholic acid was associated with 5-year recurrence-free survival (HR = 3.61, 95% CI = 1.10 to 11.84, P = 0.034). We also show correlation between these bile acids and FoxP3 + T regulatory cells. CONCLUSIONS: This study revealed that the distribution of bile acid abundances in colon cancer patients is tumor location-, age- and sex-specific, and are linked to patient prognosis. This study provides new implications for targeting bile acid metabolism, microbiome, and immune responses for colon cancer patients by taking into account primary tumor location and sex.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Feminino , Humanos , Masculino , Ácidos e Sais Biliares , Ácido Ursodesoxicólico/uso terapêutico , Ácido Ursodesoxicólico/metabolismo , Ácido Glicoquenodesoxicólico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ácido Litocólico/metabolismo , Ácido Quenodesoxicólico/metabolismo , Distribuição por Sexo , Fatores de Transcrição Forkhead
14.
Infect Immun ; 90(8): e0015322, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862710

RESUMO

C. difficile infection (CDI) is a highly inflammatory disease mediated by the production of two large toxins that weaken the intestinal epithelium and cause extensive colonic tissue damage. Antibiotic alternative therapies for CDI are urgently needed as current antibiotic regimens prolong the perturbation of the microbiota and lead to high disease recurrence rates. Inflammation is more closely correlated with CDI severity than bacterial burden, thus therapies that target the host response represent a promising yet unexplored strategy for treating CDI. Intestinal bile acids are key regulators of gut physiology that exert cytoprotective roles in cellular stress, inflammation, and barrier integrity, yet the dynamics between bile acids and host cellular processes during CDI have not been investigated. Here we show that several bile acids are protective against apoptosis caused by C. difficile toxins in Caco-2 cells and that protection is dependent on conjugation of bile acids. Out of 20 tested bile acids, taurine conjugated ursodeoxycholic acid (TUDCA) was the most potent inhibitor, yet unconjugated UDCA did not alter toxin-induced apoptosis. TUDCA treatment decreased expression of genes in lysosome associated and cytokine signaling pathways. TUDCA did not affect C. difficile growth or toxin activity in vitro whereas UDCA significantly reduced toxin activity in a Vero cell cytotoxicity assay and decreased tcdA gene expression. These results demonstrate that bile acid conjugation can have profound effects on C. difficile as well as the host and that conjugated and unconjugated bile acids may exert different therapeutic mechanisms against CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/farmacologia , Anticorpos Antibacterianos/farmacologia , Apoptose , Ácidos e Sais Biliares/farmacologia , Células CACO-2 , Infecções por Clostridium/microbiologia , Humanos , Inflamação , Ácido Tauroquenodesoxicólico , Ácido Ursodesoxicólico/farmacologia
15.
Gut Microbes ; 14(1): 2018898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35012435

RESUMO

Acute intestinal mucositis is a common off-target effect of chemotherapy, leading to co-morbidities such as vomiting, diarrhea, sepsis, and death. We previously demonstrated that the presence of enteric bacteria modulates the extent of jejunal epithelial damage induced by doxorubicin (DXR) in mice. Despite conventional thinking of the crypt as a sterile environment, recent evidence suggests that bacterial signaling influences aISC function. In this study, we labeled aISCs using transgenic Lgr5-driven fluorescence or with immunostaining for OLFM4. We examined the effect of DXR in both germ free (GF) mice and mice depleted of microbiota using an established antimicrobial treatment protocol (AMBx). We found differences in DXR-induced loss of aISCs between GF mice and mice treated with AMBx. aISCs were decreased after DXR in GF mice, whereas AMBx mice retained aISC expression after DXR. Neither group of mice exhibited an inflammatory response to DXR, suggesting the difference in aISC retention was not due to differences in local tissue inflammation. Therefore, we suspected that there was a protective microbial signal present in the AMBx mice that was not present in the GF mice. 16S rRNA sequencing of jejunal luminal contents demonstrated that AMBx altered the fecal and jejunal microbiota. In the jejunal contents, AMBx mice had increased abundance of Ureaplasma and Burkholderia. These results suggest pro-survival signaling from microbiota in AMBx-treated mice to the aISCs, and that this signaling maintains aISCs in the face of chemotherapeutic injury. Manipulation of the enteric microbiota presents a therapeutic target for reducing the severity of chemotherapy-associated mucositis.


Assuntos
Antineoplásicos/efeitos adversos , Doxorrubicina/efeitos adversos , Jejuno/efeitos dos fármacos , Mucosite/prevenção & controle , Células-Tronco/efeitos dos fármacos , Administração Oral , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antineoplásicos/administração & dosagem , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Humanos , Jejuno/citologia , Jejuno/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mucosite/microbiologia , Células-Tronco/citologia , Fatores de Tempo
16.
Microorganisms ; 9(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673352

RESUMO

Clostridioides difficile is an anaerobic pathogen that causes significant morbidity and mortality. Understanding the mechanisms of colonization resistance against C. difficile is important for elucidating the mechanisms by which C. difficile is able to colonize the gut after antibiotics. Commensal Clostridium play a key role in colonization resistance. They are able to modify bile acids which alter the C. difficile life cycle. Commensal Clostridium also produce other inhibitory metabolites including antimicrobials and short chain fatty acids. They also compete with C. difficile for vital nutrients such as proline. Understanding the mechanistic effects that these metabolites have on C. difficile and other gut pathogens is important for the development of new therapeutics against C. difficile infection (CDI), which are urgently needed.

17.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526676

RESUMO

Primary bile acids (BAs) are a collection of host-synthesized metabolites that shape physiology and metabolism. BAs transit the gastrointestinal tract and are subjected to a variety of chemical transformations encoded by indigenous bacteria. The resulting microbiota-derived BA pool is a mediator of host-microbiota interactions. Bacterial bile salt hydrolases (BSHs) cleave the conjugated glycine or taurine from BAs, an essential upstream step for the production of deconjugated and secondary BAs. Probiotic lactobacilli harbor a considerable number and diversity of BSHs; however, their contribution to Lactobacillus fitness and colonization remains poorly understood. Here, we define and compare the functions of multiple BSHs encoded by Lactobacillus acidophilus and Lactobacillus gasseri Our genetic and biochemical characterization of lactobacilli BSHs lend to a model of Lactobacillus adaptation to the gut. These findings deviate from previous notions that BSHs generally promote colonization and detoxify bile. Rather, we show that BSH enzymatic preferences and the intrinsic chemical features of various BAs determine the toxicity of these molecules during Lactobacillus growth. BSHs were able to alter the Lactobacillus transcriptome in a BA-dependent manner. Finally, BSHs were able to dictate differences in bacterial competition in vitro and in vivo, defining their impact on BSH-encoding bacteria within the greater gastrointestinal tract ecosystem. This work emphasizes the importance of considering the enzymatic preferences of BSHs alongside the conjugated/deconjugated BA-bacterial interaction. These results deepen our understanding of the BA-microbiome axis and provide a framework to engineer lactobacilli with improved bile resistance and use probiotics as BA-altering therapeutics.


Assuntos
Amidoidrolases/genética , Microbioma Gastrointestinal/genética , Interações Hospedeiro-Patógeno/genética , Lactobacillus/enzimologia , Amidoidrolases/metabolismo , Ecossistema , Microbioma Gastrointestinal/fisiologia , Aptidão Genética/genética , Humanos , Lactobacillus/genética , Probióticos/farmacologia , Especificidade por Substrato/genética
18.
PLoS One ; 16(2): e0246161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33600468

RESUMO

Ursodeoxycholic acid (commercially available as ursodiol) is a naturally occurring bile acid that is used to treat a variety of hepatic and gastrointestinal diseases. Ursodiol can modulate bile acid pools, which have the potential to alter the gut microbiota community structure. In turn, the gut microbial community can modulate bile acid pools, thus highlighting the interconnectedness of the gut microbiota-bile acid-host axis. Despite these interactions, it remains unclear if and how exogenously administered ursodiol shapes the gut microbial community structure and bile acid pool in conventional mice. This study aims to characterize how ursodiol alters the gastrointestinal ecosystem in conventional mice. C57BL/6J wildtype mice were given one of three doses of ursodiol (50, 150, or 450 mg/kg/day) by oral gavage for 21 days. Alterations in the gut microbiota and bile acids were examined including stool, ileal, and cecal content. Bile acids were also measured in serum. Significant weight loss was seen in mice treated with the low and high dose of ursodiol. Alterations in the microbial community structure and bile acid pool were seen in ileal and cecal content compared to pretreatment, and longitudinally in feces following the 21-day ursodiol treatment. In both ileal and cecal content, members of the Lachnospiraceae Family significantly contributed to the changes observed. This study is the first to provide a comprehensive view of how exogenously administered ursodiol shapes the healthy gastrointestinal ecosystem in conventional mice. Further studies to investigate how these changes in turn modify the host physiologic response are important.


Assuntos
Peso Corporal , Microbioma Gastrointestinal , Receptores Citoplasmáticos e Nucleares/metabolismo , Ácido Ursodesoxicólico/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Ceco/microbiologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Íleo/microbiologia , Masculino , Metaboloma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Ácido Ursodesoxicólico/administração & dosagem , Redução de Peso/efeitos dos fármacos
19.
Nat Commun ; 12(1): 462, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469019

RESUMO

Clostridioides difficile is a bacterial pathogen that causes a range of clinical disease from mild to moderate diarrhea, pseudomembranous colitis, and toxic megacolon. Typically, C. difficile infections (CDIs) occur after antibiotic treatment, which alters the gut microbiota, decreasing colonization resistance against C. difficile. Disease is mediated by two large toxins and the expression of their genes is induced upon nutrient depletion via the alternative sigma factor TcdR. Here, we use tcdR mutants in two strains of C. difficile and omics to investigate how toxin-induced inflammation alters C. difficile metabolism, tissue gene expression and the gut microbiota, and to determine how inflammation by the host may be beneficial to C. difficile. We show that C. difficile metabolism is significantly different in the face of inflammation, with changes in many carbohydrate and amino acid uptake and utilization pathways. Host gene expression signatures suggest that degradation of collagen and other components of the extracellular matrix by matrix metalloproteinases is a major source of peptides and amino acids that supports C. difficile growth in vivo. Lastly, the inflammation induced by C. difficile toxin activity alters the gut microbiota, excluding members from the genus Bacteroides that are able to utilize the same essential nutrients released from collagen degradation.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Infecções por Clostridium/imunologia , Microbioma Gastrointestinal/imunologia , Fator sigma/metabolismo , Animais , Antibacterianos/efeitos adversos , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Bacteroides/efeitos dos fármacos , Bacteroides/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/imunologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Nutrientes/metabolismo , Proteólise , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA-Seq , Fator sigma/genética , Fator sigma/imunologia , Transcriptoma/imunologia
20.
J Infect Dis ; 223(12 Suppl 2): S194-S200, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33326565
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA