Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Struct Mol Biol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388830

RESUMO

The RAS-MAPK pathway regulates cell proliferation, differentiation and survival, and its dysregulation is associated with cancer development. The pathway minimally comprises the small GTPase RAS and the kinases RAF, MEK and ERK. Activation of RAF by RAS is notoriously intricate and remains only partially understood. There are three RAF isoforms in mammals (ARAF, BRAF and CRAF) and two related pseudokinases (KSR1 and KSR2). RAS-mediated activation of RAF depends on an allosteric mechanism driven by the dimerization of its kinase domain. Recent work on human RAFs showed that MEK binding to KSR1 promotes KSR1-BRAF heterodimerization, which leads to the phosphorylation of free MEK molecules by BRAF. Similar findings were made with the single Drosophila RAF homolog. Here we show that the fly scaffold proteins CNK and HYP stabilize the KSR-MEK interaction, which in turn enhances RAF-KSR heterodimerization and RAF activation. The cryogenic electron microscopy structure of the minimal KSR-MEK-CNK-HYP complex reveals a ring-like arrangement of the CNK-HYP complex allowing CNK to simultaneously engage KSR and MEK, thus stabilizing the binary interaction. Together, these results illuminate how CNK contributes to RAF activation by stimulating the allosteric function of KSR and highlight the diversity of mechanisms impacting RAF dimerization as well as the regulatory potential of the KSR-MEK interaction.

2.
iScience ; 26(10): 107726, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37720104

RESUMO

MLL-rearranged (MLL-r) leukemias are among the leukemic subtypes with poorest survival, and treatment options have barely improved over the last decades. Despite increasing molecular understanding of the mechanisms behind these hematopoietic malignancies, this knowledge has had poor translation into the clinic. Here, we report a Drosophila melanogaster model system to explore the pathways affected in MLL-r leukemia. We show that expression of the human leukemic oncogene MLL-AF4 in the Drosophila hematopoietic system resulted in increased levels of circulating hemocytes and an enlargement of the larval hematopoietic organ, the lymph gland. Strikingly, depletion of Drosophila orthologs of known interactors of MLL-AF4, such as DOT1L, rescued the leukemic phenotype. In agreement, treatment with small-molecule inhibitors of DOT1L also prevented the MLL-AF4-induced leukemia-like phenotype. Taken together, this model provides an in vivo system to unravel the genetic interactors involved in leukemogenesis and offers a system for improved biological understanding of MLL-r leukemia.

3.
Nat Commun ; 14(1): 3560, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322019

RESUMO

Cell motility is a critical feature of invasive tumour cells that is governed by complex signal transduction events. Particularly, the underlying mechanisms that bridge extracellular stimuli to the molecular machinery driving motility remain partially understood. Here, we show that the scaffold protein CNK2 promotes cancer cell migration by coupling the pro-metastatic receptor tyrosine kinase AXL to downstream activation of ARF6 GTPase. Mechanistically, AXL signalling induces PI3K-dependent recruitment of CNK2 to the plasma membrane. In turn, CNK2 stimulates ARF6 by associating with cytohesin ARF GEFs and with a novel adaptor protein called SAMD12. ARF6-GTP then controls motile forces by coordinating the respective activation and inhibition of RAC1 and RHOA GTPases. Significantly, genetic ablation of CNK2 or SAMD12 reduces metastasis in a mouse xenograft model. Together, this work identifies CNK2 and its partner SAMD12 as key components of a novel pro-motility pathway in cancer cells, which could be targeted in metastasis.


Assuntos
Fatores de Ribosilação do ADP , Neoplasias , Humanos , Camundongos , Animais , Fatores de Ribosilação do ADP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 6 de Ribosilação do ADP , Transdução de Sinais/fisiologia , Movimento Celular/fisiologia , Neoplasias/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
PLoS Genet ; 17(8): e1009730, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383740

RESUMO

Acute myeloid leukemia (AML) underlies the uncontrolled accumulation of immature myeloid blasts. Several cytogenetic abnormalities have been associated with AML. Among these is the NUP98-HOXA9 (NA9) translocation that fuses the Phe-Gly repeats of nucleoporin NUP98 to the homeodomain of the transcription factor HOXA9. The mechanisms enabling NA9-induced leukemia are poorly understood. Here, we conducted a genetic screen in Drosophila for modifiers of NA9. The screen uncovered 29 complementation groups, including genes with mammalian homologs known to impinge on NA9 activity. Markedly, the modifiers encompassed a diversity of functional categories, suggesting that NA9 perturbs multiple intracellular events. Unexpectedly, we discovered that NA9 promotes cell fate transdetermination and that this phenomenon is greatly influenced by NA9 modifiers involved in epigenetic regulation. Together, our work reveals a network of genes functionally connected to NA9 that not only provides insights into its mechanism of action, but also represents potential therapeutic targets.


Assuntos
Proteínas de Homeodomínio/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Animais , Diferenciação Celular/genética , Drosophila melanogaster/genética , Epigênese Genética/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Células Mieloides/metabolismo , Células Mieloides/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes/genética , Fatores de Transcrição/genética , Translocação Genética/genética
6.
Nat Chem Biol ; 16(11): 1170-1178, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778845

RESUMO

The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation and survival, enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAF(V600E) have shown great efficacy in the clinic, but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated. Here, we investigated a proteolysis-targeting chimera (PROTAC) approach to BRAF inhibition. The most effective PROTAC, termed P4B, displayed superior specificity and inhibitory properties relative to non-PROTAC controls in BRAF(V600E) cell lines. In addition, P4B displayed utility in cell lines harboring alternative BRAF mutations that impart resistance to conventional BRAF inhibitors. This work provides a proof of concept for a substitute to conventional chemical inhibition to therapeutically constrain oncogenic BRAF.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Talidomida , Ubiquitina , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Terapia de Alvo Molecular , Mutação , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Relação Estrutura-Atividade , Talidomida/análogos & derivados , Talidomida/química , Ubiquitina/química
7.
Nat Rev Mol Cell Biol ; 21(10): 607-632, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32576977

RESUMO

The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos
8.
Nat Commun ; 9(1): 4385, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349006

RESUMO

The tumor suppressor and deubiquitinase (DUB) BAP1 and its Drosophila ortholog Calypso assemble DUB complexes with the transcription regulators Additional sex combs-like (ASXL1, ASXL2, ASXL3) and Asx respectively. ASXLs and Asx use their DEUBiquitinase ADaptor (DEUBAD) domain to stimulate BAP1/Calypso DUB activity. Here we report that monoubiquitination of the DEUBAD is a general feature of ASXLs and Asx. BAP1 promotes DEUBAD monoubiquitination resulting in an increased stability of ASXL2, which in turn stimulates BAP1 DUB activity. ASXL2 monoubiquitination is directly catalyzed by UBE2E family of Ubiquitin-conjugating enzymes and regulates mammalian cell proliferation. Remarkably, Calypso also regulates Asx monoubiquitination and transgenic flies expressing monoubiquitination-defective Asx mutant exhibit developmental defects. Finally, the protein levels of ASXL2, BAP1 and UBE2E enzymes are highly correlated in mesothelioma tumors suggesting the importance of this signaling axis for tumor suppression. We propose that monoubiquitination orchestrates a molecular symbiosis relationship between ASXLs and BAP1.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/genética , Ubiquitinação/fisiologia
9.
Am J Med Genet A ; 176(12): 2924-2929, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30302932

RESUMO

This report summarizes and highlights the fifth International RASopathies Symposium: When Development and Cancer Intersect, held in Orlando, Florida in July 2017. The RASopathies comprise a recognizable pattern of malformation syndromes that are caused by germ line mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. Because of their common underlying pathogenetic etiology, there is significant overlap in their phenotypic features, which includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, gastrointestinal and ocular abnormalities, neurological and neurocognitive issues, and a predisposition to cancer. The RAS pathway is a well-known oncogenic pathway that is commonly found to be activated in somatic malignancies. As in somatic cancers, the RASopathies can be caused by various pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. As such, the RASopathies represent an excellent model of study to explore the intersection of the effects of dysregulation and its consequence in both development and oncogenesis.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas ras/genética , Animais , Regulação da Expressão Gênica , Estudos de Associação Genética/métodos , Desenvolvimento Humano , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Organogênese/genética , Transdução de Sinais , Síndrome , Proteínas ras/metabolismo
10.
Nature ; 554(7693): 549-553, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29433126

RESUMO

RAF family kinases have prominent roles in cancer. Their activation is dependent on dimerization of their kinase domains, which has emerged as a hindrance for drug development. In mammals, RAF family kinases include three catalytically competent enzymes (ARAF, BRAF and CRAF) and two pseudokinases (KSR1 and KSR2) that have been described as scaffolds owing to their apparent ability to bridge RAF isoforms and their substrate, mitogen-activated protein kinase kinase (MEK). Kinase suppressor of Ras (KSR) pseudokinases were also shown to dimerize with kinase-competent RAFs to stimulate catalysis allosterically. Although GTP-bound RAS can modulate the dimerization of RAF isoforms by engaging their RAS-binding domains, KSR1 and KSR2 lack an RAS-binding domain and therefore the regulatory principles underlying their dimerization with other RAF family members remain unknown. Here we show that the selective heterodimerization of BRAF with KSR1 is specified by direct contacts between the amino-terminal regulatory regions of each protein, comprising in part a novel domain called BRS in BRAF and the coiled-coil-sterile α motif (CC-SAM) domain in KSR1. We also discovered that MEK binding to the kinase domain of KSR1 asymmetrically drives BRAF-KSR1 heterodimerization, resulting in the concomitant stimulation of BRAF catalytic activity towards free MEK molecules. These findings demonstrate that KSR-MEK complexes allosterically activate BRAF through the action of N-terminal regulatory region and kinase domain contacts and challenge the accepted role of KSR as a scaffold for MEK recruitment to RAF.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Ativação Enzimática , Humanos , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
11.
Nat Commun ; 8(1): 1211, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29084939

RESUMO

First-generation RAF inhibitors paradoxically induce ERK signaling in normal and tumor cells exhibiting RAS activity. Compound-induced RAF dimerization through stabilization of the RAF ON/active state by inhibitors has emerged as a critical contributing factor. RAF inhibitors also enhance RAS-RAF association. Although this event is thought to play a key role in priming RAF activation, the underlying mechanism is not known. Here we report that RAF inhibitors induce the disruption of intramolecular interactions between the kinase domain and its N-terminal regulatory region independently of RAS activity. This provides a molecular basis to explain the induction of RAS-RAF association by RAF inhibitors, as well as the co-operativity observed between RAS activity and RAF kinase inhibitors in driving RAF activation. Profiling of second-generation RAF inhibitors confirmed their improved mode of action, but also revealed liabilities that allowed us to discern two properties of an ideal RAF inhibitor: high-binding affinity to all RAF paralogs and maintenance of the OFF/autoinhibited state of the enzyme.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Mutação/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética
12.
Mol Cell Proteomics ; 16(4): 663-679, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28188228

RESUMO

Small molecules targeting aberrant RAF activity, like vemurafenib (PLX4032), are highly effective against cancers harboring the V600E BRAF mutation and are now approved for clinical use against metastatic melanoma. However, in tissues showing elevated RAS activity and in RAS mutant tumors, these inhibitors stimulate RAF dimerization, resulting in inhibitor resistance and downstream "paradoxical" ERK activation. To understand the global signaling response of cancer cells to RAF inhibitors, we profiled the temporal changes of the phosphoproteome of two colon cancer cell lines (Colo205 and HCT116) that respond differently to vemurafenib. Comprehensive data mining and filtering identified a total of 37,910 phosphorylation sites, 660 of which were dynamically modulated upon treatment with vemurafenib. We established that 83% of these dynamic phosphorylation sites were modulated in accordance with the phospho-ERK profile of the two cell lines. Accordingly, kinase substrate prediction algorithms linked most of these dynamic sites to direct ERK1/2-mediated phosphorylation, supporting a low off-target rate for vemurafenib. Functional classification of target proteins indicated the enrichment of known (nuclear pore, transcription factors, and RAS-RTK signaling) and novel (Rho GTPases signaling and actin cytoskeleton) ERK-controlled functions. Our phosphoproteomic data combined with experimental validation established novel dynamic connections between ERK signaling and the transcriptional regulators TEAD3 (Hippo pathway), MKL1, and MKL2 (Rho serum-response elements pathway). We also confirm that an ERK-docking site found in MKL1 is directly antagonized by overlapping actin binding, defining a novel mechanism of actin-modulated phosphorylation. Altogether, time-resolved phosphoproteomics further documented vemurafenib selectivity and identified novel ERK downstream substrates.


Assuntos
Neoplasias do Colo/metabolismo , Indóis/farmacologia , Fosfoproteínas/efeitos dos fármacos , Proteômica/métodos , Sulfonamidas/farmacologia , Algoritmos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mapas de Interação de Proteínas , Vemurafenib
13.
Nat Chem Biol ; 13(1): 62-68, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27820802

RESUMO

RAS GTPases are important mediators of oncogenesis in humans. However, pharmacological inhibition of RAS has proved challenging. Here we describe a functionally critical region, located outside the effector lobe of RAS, that can be targeted for inhibition. We developed NS1, a synthetic binding protein (monobody) that bound with high affinity to both GTP- and GDP-bound states of H-RAS and K-RAS but not N-RAS. NS1 potently inhibited growth factor signaling and oncogenic H-RAS- and K-RAS-mediated signaling and transformation but did not block oncogenic N-RAS, BRAF or MEK1. NS1 bound the α4-ß6-α5 region of RAS, which disrupted RAS dimerization and nanoclustering and led to blocking of CRAF-BRAF heterodimerization and activation. These results establish the importance of the α4-ß6-α5 interface in RAS-mediated signaling and define a previously unrecognized site in RAS for inhibiting RAS function.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Proteínas ras/antagonistas & inibidores , Proteínas ras/química , Animais , Anticorpos Monoclonais/química , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Proteínas ras/metabolismo
14.
Dev Biol ; 421(1): 16-26, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838340

RESUMO

Acute myeloid leukemia (AML) is a complex malignancy with poor prognosis. Several genetic lesions can lead to the disease. One of these corresponds to the NUP98-HOXA9 (NA9) translocation that fuses sequences encoding the N-terminal part of NUP98 to those encoding the DNA-binding domain of HOXA9. Despite several studies, the mechanism underlying NA9 ability to induce leukemia is still unclear. To bridge this gap, we sought to functionally dissect NA9 activity using Drosophila. For this, we generated transgenic NA9 fly lines and expressed the oncoprotein during larval hematopoiesis. This markedly enhanced cell proliferation and tissue growth, but did not alter cell fate specification. Moreover, reminiscent to NA9 activity in mammals, strong cooperation was observed between NA9 and the MEIS homolog HTH. Genetic characterization of NA9-induced phenotypes suggested interference with PVR (Flt1-4 RTK homolog) signaling, which is similar to functional interactions observed in mammals between Flt3 and HOXA9 in leukemia. Finally, NA9 expression was also found to induce non-cell autonomous effects, raising the possibility that its leukemia-inducing activity also relies on this property. Together, our work suggests that NA9 ability to induce blood cell expansion is evolutionarily conserved. The amenability of NA9 activity to a genetically-tractable system should facilitate unraveling its molecular underpinnings.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Hematopoese , Proteínas de Homeodomínio/metabolismo , Tecido Linfoide/crescimento & desenvolvimento , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Proteínas de Drosophila/metabolismo , Hemócitos/patologia , Humanos , Hiperplasia , Tecido Linfoide/patologia , Mamíferos , Índice Mitótico , Fenótipo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Células-Tronco/citologia
15.
Methods Mol Biol ; 1487: 1-21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27924555

RESUMO

Cells respond to changes in their environment, to developmental cues, and to pathogen aggression through the action of a complex network of proteins. These networks can be decomposed into a multitude of signaling pathways that relay signals from the microenvironment to the cellular components involved in eliciting a specific response. Perturbations in these signaling processes are at the root of multiple pathologies, the most notable of these being cancer. The study of receptor tyrosine kinase (RTK) signaling led to the first description of a mechanism whereby an extracellular signal is transmitted to the nucleus to induce a transcriptional response. Genetic studies conducted in drosophila and nematodes have provided key elements to this puzzle. Here, we briefly discuss the somewhat lesser known contribution of these multicellular organisms to our understanding of what has come to be known as the prototype of signaling pathways. We also discuss the ostensibly much larger network of regulators that has emerged from recent functional genomic investigations of RTK/RAS/ERK signaling.


Assuntos
Estudos de Associação Genética , Sistema de Sinalização das MAP Quinases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genômica/métodos , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas ras/metabolismo
16.
Behav Res Methods ; 49(4): 1460-1469, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27631990

RESUMO

Despite its high sensitivity and validity in the context of sleep loss, the Psychomotor Vigilance Test (PVT) could be improved. The aim of the present study was to validate a new smartphone PVT-type application called sleep-2-Peak (s2P) by determining its ability to assess fatigue-related changes in alertness in a context of extended wakefulness. Short 3-min versions of s2P and of the classic PVT were administered at every even hour during a 35-h total sleep deprivation protocol. In addition, subjective measures of sleepiness were collected. The outcomes on these tests were then compared using Pearson product-moment correlations, t tests, and repeated measures within-groups analyses of variance. The results showed that both tests significantly correlated on all outcome variables, that both significantly distinguished between the alert and sleepy states in the same individual, and that both varied similarly through the sleep deprivation protocol as sleep loss accumulated. All outcome variables on both tests also correlated significantly with the subjective measures of sleepiness. These results suggest that a 3-min version of s2P is a valid tool for differentiating alert from sleepy states and is as sensitive as the PVT for tracking fatigue-related changes during extended wakefulness and sleep loss. Unlike the PVT, s2P does not provide feedback to subjects on each trial. We discuss how this feature of s2P raises the possibility that the performance results measured by s2P could be less impacted by motivational confounds, giving this tool added value in particular clinical and/or research settings.


Assuntos
Fadiga/diagnóstico , Aplicativos Móveis , Privação do Sono/diagnóstico , Smartphone , Vigília , Adolescente , Adulto , Atenção , Fadiga/fisiopatologia , Feminino , Humanos , Masculino , Desempenho Psicomotor , Tempo de Reação , Sono , Privação do Sono/fisiopatologia , Adulto Jovem
17.
PLoS Biol ; 14(8): e1002539, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27552662

RESUMO

RAS-induced MAPK signaling is a central driver of the cell proliferation apparatus. Disruption of this pathway is widely observed in cancer and other pathologies. Consequently, considerable effort has been devoted to understanding the mechanistic aspects of RAS-MAPK signal transmission and regulation. While much information has been garnered on the steps leading up to the activation and inactivation of core pathway components, comparatively little is known on the mechanisms controlling their expression and turnover. We recently identified several factors that dictate Drosophila MAPK levels. Here, we describe the function of one of these, the deubiquitinase (DUB) USP47. We found that USP47 acts post-translationally to counteract a proteasome-mediated event that reduces MAPK half-life and thereby dampens signaling output. Using an RNAi-based genetic interaction screening strategy, we identified UBC6, POE/UBR4, and UFD4, respectively, as E2 and E3 enzymes that oppose USP47 activity. Further characterization of POE-associated factors uncovered KCMF1 as another key component modulating MAPK levels. Together, these results identify a novel protein degradation module that governs MAPK levels. Given the role of UBR4 as an N-recognin ubiquitin ligase, our findings suggest that RAS-MAPK signaling in Drosophila is controlled by the N-end rule pathway and that USP47 counteracts its activity.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a Calmodulina/genética , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Immunoblotting , Sistema de Sinalização das MAP Quinases/genética , Modelos Biológicos , Mutação , Estabilidade Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação , Asas de Animais/metabolismo
18.
Nat Rev Mol Cell Biol ; 16(5): 281-98, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25907612

RESUMO

RAF family kinases were among the first oncoproteins to be described more than 30 years ago. They primarily act as signalling relays downstream of RAS, and their close ties to cancer have fuelled a large number of studies. However, we still lack a systems-level understanding of their regulation and mode of action. The recent discovery that the catalytic activity of RAF depends on an allosteric mechanism driven by kinase domain dimerization is providing a vital new piece of information towards a comprehensive model of RAF function. The fact that current RAF inhibitors unexpectedly induce ERK signalling by stimulating RAF dimerization also calls for a deeper structural characterization of this family of kinases.


Assuntos
Sistema de Sinalização das MAP Quinases , Quinases raf/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Quinases raf/química , Quinases raf/genética
19.
Nat Struct Mol Biol ; 22(1): 37-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437913

RESUMO

Reported RAF kinase domain structures adopt a side-to-side dimer configuration reflective of an 'on' state that underpins an allosteric mechanism of regulation. Atomic details of the monomer 'off' state have been elusive. Reinspection of the BRAF kinase domain structures revealed that sulfonamide inhibitors induce features of an off state, primarily a laterally displaced helix αC stabilized by the activation segment helix 1 (AS-H1). These features correlated with the ability of sulfonamides to disrupt human BRAF homodimers in cells, in vitro and in crystals yielding a structure of BRAF in a monomer state. The crystal structure revealed exaggerated, nonproductive positions of helix αC and AS-H1, the latter of which is the target of potent BRAF oncogenic mutations. Together, this work provides formal proof of an allosteric link between the RAF dimer interface, the activation segment and the catalytic infrastructure.


Assuntos
Regulação Alostérica , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Humanos , Ligação Proteica , Conformação Proteica , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/metabolismo
20.
Trends Biochem Sci ; 39(10): 475-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25220378

RESUMO

The ability of protein kinases to switch between inactive and active states is critical to control the outputs of cellular signaling pathways. In several protein kinases, the conformation of helix αC is a key hub on which regulatory inputs converge to induce catalytic switching. An emerging mechanism involved in regulating helix αC orientation is the allosteric coupling with kinase domain surfaces involved in homo- or heterodimerization. In this review, we discuss dimerization-mediated regulation of the rapidly accelerated fibrosarcoma (RAF) and eIF2α kinase families and draw parallels with the analogous behavior of the epidermal growth factor receptor (EGFR) and serine/threonine-protein kinase endoribonuclease 1 (IRE1)/ribonuclease L (RNAse L) kinase families. Given that resistance to RAF-targeted therapeutics often stems from dimerization-dependent mechanisms, we suggest that a better understanding of dimerization-induced allostery may assist in developing alternate therapeutic strategies.


Assuntos
Regulação Alostérica , Proteínas Quinases/metabolismo , Multimerização Proteica , Endorribonucleases/metabolismo , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Humanos , Modelos Moleculares , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína/fisiologia , Transdução de Sinais , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...