Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559133

RESUMO

The ascending somatosensory pathways convey crucial information about pain, touch, itch, and body part movement from peripheral organs to the central nervous system. Despite a significant need for effective therapeutics modulating pain and other somatosensory modalities, clinical translation remains challenging, which is likely related to species-specific features and the lack of in vitro models to directly probe and manipulate this polysynaptic pathway. Here, we established human ascending somatosensory assembloids (hASA)- a four-part assembloid completely generated from human pluripotent stem cells that integrates somatosensory, spinal, diencephalic, and cortical organoids to model the human ascending spinothalamic pathway. Transcriptomic profiling confirmed the presence of key cell types in this circuit. Rabies tracing and calcium imaging showed that sensory neurons connected with dorsal spinal cord projection neurons, which ascending axons further connected to thalamic neurons. Following noxious chemical stimulation, single neuron calcium imaging of intact hASA demonstrated coordinated response, while four-part concomitant extracellular recordings and calcium imaging revealed synchronized activity across the assembloid. Loss of the sodium channel SCN9A, which causes pain insensitivity in humans, disrupted synchrony across the four-part hASA. Taken together, these experiments demonstrate the ability to functionally assemble the essential components of the human sensory pathway. These findings could both accelerate our understanding of human sensory circuits and facilitate therapeutic development.

2.
Nature ; 628(8009): 818-825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658687

RESUMO

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Assuntos
Transtorno Autístico , Síndrome do QT Longo , Oligonucleotídeos Antissenso , Sindactilia , Animais , Feminino , Humanos , Masculino , Camundongos , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Movimento Celular/efeitos dos fármacos , Dendritos/metabolismo , Éxons/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Organoides/efeitos dos fármacos , Organoides/metabolismo , Prosencéfalo/metabolismo , Prosencéfalo/citologia , Sindactilia/tratamento farmacológico , Sindactilia/genética , Interneurônios/citologia , Interneurônios/efeitos dos fármacos
3.
Nature ; 622(7982): 359-366, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758944

RESUMO

The assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain1-3, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development4. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development5, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids6. Here we integrate assembloids with CRISPR screening to investigate the involvement of 425 NDD genes in human interneuron development. The first screen aimed at interneuron generation revealed 13 candidate genes, including CSDE1 and SMAD4. We subsequently conducted an interneuron migration screen in more than 1,000 forebrain assembloids that identified 33 candidate genes, including cytoskeleton-related genes and the endoplasmic reticulum-related gene LNPK. We discovered that, during interneuron migration, the endoplasmic reticulum is displaced along the leading neuronal branch before nuclear translocation. LNPK deletion interfered with this endoplasmic reticulum displacement and resulted in abnormal migration. These results highlight the power of this CRISPR-assembloid platform to systematically map NDD genes onto human development and reveal disease mechanisms.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Recém-Nascido , Gravidez , Movimento Celular/genética , Sistemas CRISPR-Cas/genética , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Organoides/citologia , Organoides/embriologia , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Organoides/patologia , Retículo Endoplasmático/metabolismo , Prosencéfalo/citologia , Prosencéfalo/embriologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Transporte Ativo do Núcleo Celular
4.
Cell ; 183(7): 1913-1929.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33333020

RESUMO

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.


Assuntos
Córtex Cerebral/fisiologia , Córtex Motor/fisiologia , Organoides/fisiologia , Animais , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Vértebras Cervicais , Regulação da Expressão Gênica , Glutamatos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Músculos/fisiologia , Mioblastos/metabolismo , Rede Nervosa/fisiologia , Optogenética , Organoides/ultraestrutura , Rombencéfalo/fisiologia , Esferoides Celulares/citologia , Medula Espinal/citologia
5.
Nat Biotechnol ; 38(12): 1421-1430, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33273741

RESUMO

Cortico-striatal projections are critical components of forebrain circuitry that regulate motivated behaviors. To enable the study of the human cortico-striatal pathway and how its dysfunction leads to neuropsychiatric disease, we developed a method to convert human pluripotent stem cells into region-specific brain organoids that resemble the developing human striatum and include electrically active medium spiny neurons. We then assembled these organoids with cerebral cortical organoids in three-dimensional cultures to form cortico-striatal assembloids. Using viral tracing and functional assays in intact or sliced assembloids, we show that cortical neurons send axonal projections into striatal organoids and form synaptic connections. Medium spiny neurons mature electrophysiologically following assembly and display calcium activity after optogenetic stimulation of cortical neurons. Moreover, we derive cortico-striatal assembloids from patients with a neurodevelopmental disorder caused by a deletion on chromosome 22q13.3 and capture disease-associated defects in calcium activity, showing that this approach will allow investigation of the development and functional assembly of cortico-striatal connectivity using patient-derived cells.


Assuntos
Córtex Cerebral/citologia , Corpo Estriado/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Cálcio/metabolismo , Feminino , Humanos , Modelos Biológicos , Rede Nervosa/fisiologia , Optogenética , Fenótipo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...