Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Microb Cell Fact ; 23(1): 119, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659027

RESUMO

BACKGROUND: Clostridium spp. has demonstrated therapeutic potential in cancer treatment through intravenous or intratumoral administration. This approach has expanded to include non-pathogenic clostridia for the treatment of various diseases, underscoring the innovative concept of oral-spore vaccination using clostridia. Recent advancements in the field of synthetic biology have significantly enhanced the development of Clostridium-based bio-therapeutics. These advancements are particularly notable in the areas of efficient protein overexpression and secretion, which are crucial for the feasibility of oral vaccination strategies. Here, we present two examples of genetically engineered Clostridium candidates: one as an oral cancer vaccine and the other as an antiviral oral vaccine against SARS-CoV-2. RESULTS: Using five validated promoters and a signal peptide derived from Clostridium sporogenes, a series of full-length NY-ESO-1/CTAG1, a promising cancer vaccine candidate, expression vectors were constructed and transformed into C. sporogenes and Clostridium butyricum. Western blotting analysis confirmed efficient expression and secretion of NY-ESO-1 in clostridia, with specific promoters leading to enhanced detection signals. Additionally, the fusion of a reported bacterial adjuvant to NY-ESO-1 for improved immune recognition led to the cloning difficulties in E. coli. The use of an AUU start codon successfully mitigated potential toxicity issues in E. coli, enabling the secretion of recombinant proteins in C. sporogenes and C. butyricum. We further demonstrate the successful replacement of PyrE loci with high-expression cassettes carrying NY-ESO-1 and adjuvant-fused NY-ESO-1, achieving plasmid-free clostridia capable of secreting the antigens. Lastly, the study successfully extends its multiplex genetic manipulations to engineer clostridia for the secretion of SARS-CoV-2-related Spike_S1 antigens. CONCLUSIONS: This study successfully demonstrated that C. butyricum and C. sporogenes can produce the two recombinant antigen proteins (NY-ESO-1 and SARS-CoV-2-related Spike_S1 antigens) through genetic manipulations, utilizing the AUU start codon. This approach overcomes challenges in cloning difficult proteins in E. coli. These findings underscore the feasibility of harnessing commensal clostridia for antigen protein secretion, emphasizing the applicability of non-canonical translation initiation across diverse species with broad implications for medical or industrial biotechnology.


Assuntos
Clostridium butyricum , Clostridium , Proteínas Recombinantes , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Clostridium/genética , Clostridium/metabolismo , Humanos , Proteínas Recombinantes/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Administração Oral , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/imunologia , Vacinação , COVID-19/prevenção & controle , Engenharia Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas
2.
Mol Diagn Ther ; 28(2): 141-151, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302842

RESUMO

Necrosis is a common feature of solid tumours that offers a unique opportunity for targeted cancer therapy as it is absent from normal healthy tissues. Tumour necrosis provides an ideal environment for germination of the anaerobic bacterium Clostridium from endospores, resulting in tumour-specific colonisation. Two main species, Clostridium novyi-NT and Clostridium sporogenes, are at the forefront of this therapy, showing promise in preclinical models. However, anti-tumour activity is modest when used as a single agent, encouraging development of Clostridium as a tumour-selective gene delivery system. Various methods, such as allele-coupled exchange and CRISPR-cas9 technology, can facilitate the genetic modification of Clostridium, allowing chromosomal integration of transgenes to ensure long-term stability of expression. Strains of Clostridium can be engineered to express prodrug-activating enzymes, resulting in the generation of active drug selectively in the tumour microenvironment (a concept termed Clostridium-directed enzyme prodrug therapy). More recently, Clostridium strains have been investigated in the context of cancer immunotherapy, either in combination with immune checkpoint inhibitors or with engineered strains expressing immunomodulatory molecules such as IL-2 and TNF-α. Localised expression of these molecules using tumour-targeting Clostridium strains has the potential to improve delivery and reduce systemic toxicity. In summary, Clostridium species represent a promising platform for cancer therapy, with potential for localised gene delivery and immunomodulation selectively within the tumour microenvironment. The ongoing clinical progress being made with C. novyi-NT, in addition to developments in genetic modification techniques and non-invasive imaging capabilities, are expected to further progress Clostridium as an option for cancer treatment.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Neoplasias/genética , Neoplasias/terapia , Clostridium/genética , Clostridium/metabolismo , Pró-Fármacos/metabolismo , Técnicas de Transferência de Genes , Necrose , Microambiente Tumoral
3.
Crit Rev Microbiol ; : 1-16, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346140

RESUMO

Cancer immunotherapies have been widely hailed as a breakthrough for cancer treatment in the last decade, epitomized by the unprecedented results observed with checkpoint blockade. Even so, only a minority of patients currently achieve durable remissions. In general, responsive patients appear to have either a high number of tumor neoantigens, a preexisting immune cell infiltrate in the tumor microenvironment, or an 'immune-active' transcriptional profile, determined in part by the presence of a type I interferon gene signature. These observations suggest that the therapeutic efficacy of immunotherapy can be enhanced through strategies that release tumor neoantigens and/or produce a pro-inflammatory tumor microenvironment. In principle, exogenous tumor-targeting bacteria offer a unique solution for improving responsiveness to immunotherapy. This review discusses how tumor-selective bacterial infection can modulate the immunological microenvironment of the tumor and the potential for combination with cancer immunotherapy strategies to further increase therapeutic efficacy. In addition, we provide a perspective on the clinical translation of replicating bacterial therapies, with a focus on the challenges that must be resolved to ensure a successful outcome.

4.
Microbiol Spectr ; 11(6): e0245923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37947521

RESUMO

IMPORTANCE: Continued efforts in developing the CRISPR-Cas systems will further enhance our understanding and utilization of Clostridium species. This study demonstrates the development and application of a genome-engineering tool in two Clostridium strains, Clostridium butyricum and Clostridium sporogenes, which have promising potential as probiotics and oncolytic agents. Particular attention was given to the folding of precursor crRNA and the role of this process in off-target DNA cleavage by Cas12a. The results provide the guidelines necessary for efficient genome engineering using this system in clostridia. Our findings not only expand our fundamental understanding of genome-engineering tools in clostridia but also improve this technology to allow use of its full potential in a plethora of biotechnological applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Clostridium/genética , Bactérias Anaeróbias/genética , Genoma Bacteriano
6.
J Cachexia Sarcopenia Muscle ; 14(3): 1410-1423, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37025071

RESUMO

INTRODUCTION: Cancer cachexia, highly prevalent in lung cancer, is a debilitating syndrome characterized by involuntary loss of skeletal muscle mass and is associated with poor clinical outcome, decreased survival and negative impact on tumour therapy. Various lung tumour-bearing animal models have been used to explore underlying mechanisms of cancer cachexia. However, these models do not simulate anatomical and immunological features key to lung cancer and associated muscle wasting. Overcoming these shortcomings is essential to translate experimental findings into the clinic. We therefore evaluated whether a syngeneic, orthotopic lung cancer mouse model replicates systemic and muscle-specific alterations associated with human lung cancer cachexia. METHODS: Immune competent, 11 weeks old male 129S2/Sv mice, were randomly allocated to either (1) sham control group or (2) tumour-bearing group. Syngeneic lung epithelium-derived adenocarcinoma cells (K-rasG12D ; p53R172HΔG ) were inoculated intrapulmonary into the left lung lobe of the mice. Body weight and food intake were measured daily. At baseline and weekly after surgery, grip strength was measured and tumour growth and muscle volume were assessed using micro cone beam CT imaging. After reaching predefined surrogate survival endpoint, animals were euthanized, and skeletal muscles of the lower hind limbs were collected for biochemical analysis. RESULTS: Two-third of the tumour-bearing mice developed cachexia based on predefined criteria. Final body weight (-13.7 ± 5.7%; P < 0.01), muscle mass (-13.8 ± 8.1%; P < 0.01) and muscle strength (-25.5 ± 10.5%; P < 0.001) were reduced in cachectic mice compared with sham controls and median survival time post-surgery was 33.5 days until humane endpoint. Markers for proteolysis, both ubiquitin proteasome system (Fbxo32 and Trim63) and autophagy-lysosomal pathway (Gabarapl1 and Bnip3), were significantly upregulated, whereas markers for protein synthesis (relative phosphorylation of Akt, S6 and 4E-BP1) were significantly decreased in the skeletal muscle of cachectic mice compared with control. The cachectic mice exhibited increased pentraxin-2 (P < 0.001) and CXCL1/KC (P < 0.01) expression levels in blood plasma and increased mRNA expression of IκBα (P < 0.05) in skeletal muscle, indicative for the presence of systemic inflammation. Strikingly, RNA sequencing, pathway enrichment and miRNA expression analyses of mouse skeletal muscle strongly mirrored alterations observed in muscle biopsies of patients with lung cancer cachexia. CONCLUSIONS: We developed an orthotopic model of lung cancer cachexia in immune competent mice. Because this model simulates key aspects specific to cachexia in lung cancer patients, it is highly suitable to further investigate the underlying mechanisms of lung cancer cachexia and to test the efficacy of novel intervention strategies.


Assuntos
Caquexia , Neoplasias Pulmonares , Animais , Masculino , Camundongos , Biomarcadores/metabolismo , Caquexia/metabolismo , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/tratamento farmacológico , Força Muscular , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo
7.
Biomedicines ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36830818

RESUMO

Cancer is the second leading cause of death worldwide and the global cancer burden rises rapidly. The risk factors for cancer development can often be attributed to lifestyle factors, of which an unhealthy diet is a major contributor. Dietary fat is an important macronutrient and therefore a crucial part of a well-balanced and healthy diet, but it is still unclear which specific fatty acids contribute to a healthy and well-balanced diet in the context of cancer risk and prognosis. In this review, we describe epidemiological evidence on the associations between the intake of different classes of fatty acids and the risk of developing cancer, and we provide preclinical evidence on how specific fatty acids can act on tumor cells, thereby modulating tumor progression and metastasis. Moreover, the pro- and anti-inflammatory effects of each of the different groups of fatty acids will be discussed specifically in the context of inflammation-induced cancer progression and we will highlight challenges as well as opportunities for successful application of fatty acid tailored nutritional interventions in the clinic.

8.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289617

RESUMO

Cathepsins are lysosomal proteases that are essential to maintain cellular physiological homeostasis and are involved in multiple processes, such as immune and energy regulation. Predominantly, cathepsins reside in the lysosomal compartment; however, they can also be secreted by cells and enter the extracellular space. Extracellular cathepsins have been linked to several pathologies, including non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). NASH is an increasingly important risk factor for the development of HCC, which is the third leading cause of cancer-related deaths and poses a great medical and economic burden. While information regarding the involvement of cathepsins in NASH-induced HCC (NASH-HCC) is limited, data to support the role of cathepsins in either NASH or HCC is accumulating. Since cathepsins play a role in both NASH and HCC, it is likely that the role of cathepsins is more significant in NASH-HCC compared to HCC derived from other etiologies. In the current review, we provide an overview on the available data regarding cathepsins in NASH and HCC, argue that cathepsins play a key role in the transition from NASH to HCC, and shed light on therapeutic options in this context.

9.
ACS Synth Biol ; 11(11): 3817-3828, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36265075

RESUMO

Several species from the Clostridium genus show promise as industrial solvent producers and cancer therapeutic delivery vehicles. Previous development of shuttle plasmids and genome editing tools has aided the study of these species and enabled their exploitation in industrial and medical applications. Nevertheless, the precise control of gene expression is still hindered by the limited range of characterized promoters. To address this, libraries of promoters (native and synthetic), 5' UTRs, and alternative start codons were constructed. These constructs were tested in Escherichia coli K-12, Clostridium sporogenes NCIMB 10696, and Clostridium butyricum DSM 10702, using ß-glucuronidase (gusA) as a gene reporter. Promoter activity was corroborated using a second gene reporter, nitroreductase (nmeNTR) from Neisseria meningitides. A strong correlation was observed between the two reporters. In C. sporogenes and C. butyricum, respectively, changes in GusA activity between the weakest and strongest expressing levels were 129-fold and 78-fold. Similar results were obtained with the nmeNTR. Using the GusA reporter, translation initiation from six alternative (non-AUG) start codons was measured in E. coli, C. sporogenes, and C. butyricum. Clearly, species-specific differences between clostridia and E. coli in translation initiation were observed, and the performance of the start codons was influenced by the upstream 5' UTR sequence. These results highlight a new opportunity for gene control in recombinant clostridia. To demonstrate the value of these results, expression of the sacB gene from Bacillus subtilis was optimized for use as a novel negative selection marker in C. butyricum. In summary, these results indicate improvements in the understanding of heterologous gene regulation in Clostridium species and E. coli cloning strains. This new knowledge can be utilized for rationally designed gene regulation in Clostridium-mediated industrial and medical applications, as well as fundamental research into the biology of Clostridium species.


Assuntos
Escherichia coli K12 , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Códon de Iniciação/metabolismo , Escherichia coli K12/genética , Clostridium/genética , Regiões Promotoras Genéticas/genética , Regiões 5' não Traduzidas
10.
Cancers (Basel) ; 14(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077694

RESUMO

Homologous recombination deficiency (HRD) is a prevalent in approximately 17% of tumors and is associated with enhanced sensitivity to anticancer therapies inducing double-strand DNA breaks. Accurate detection of HRD would therefore allow improved patient selection and outcome of conventional and targeted anticancer therapies. However, current clinical assessment of HRD mainly relies on determining germline BRCA1/2 mutational status and is insufficient for adequate patient stratification as mechanisms of HRD occurrence extend beyond functional BRCA1/2 loss. HRD, regardless of BRCA1/2 status, is associated with specific forms of genomic and mutational signatures termed HRD scar. Detection of this HRD scar might therefore be a more reliable biomarker for HRD. This review discusses and compares different methods of assessing HRD and HRD scar, their advances into the clinic, and their potential implications for precision oncology.

11.
Front Nutr ; 9: 868436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811951

RESUMO

Although immunotherapy represents one of the most potent therapeutic anti-cancer approaches, only a limited number of patients shows clinical benefit. Recent evidence suggests that patients' nutritional status plays a major role in immunotherapy outcome. Fatty acids are essential in a balanced diet and well-known to influence the immune response. Moreover, short-chain fatty acids (SCFAs) show beneficial effects in metabolic disorders as well as in cancer and polyunsaturated fatty acids (PUFAs) contribute to body weight and fat free mass preservation in cancer patients. In line with these data, several studies imply a role for SCFAs and PUFAs in boosting the outcome of immunotherapy. In this review, we specifically focus on mechanistic data showing that SCFAs modulate the immunogenicity of tumor cells and we discuss the direct effects of SCFAs and PUFAs on the immune system in the context of cancer. We provide preclinical and clinical evidence indicating that SCFAs and PUFAs may have the potential to boost immunotherapy efficacy. Finally, we describe the challenges and address opportunities for successful application of nutritional interventions focusing on SCFAs and PUFAs to increase the therapeutic potential of immunotherapeutic approaches for cancer.

12.
Cancer Gene Ther ; 29(2): 178-188, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558701

RESUMO

Necrosis is a typical histological feature of solid tumours that provides a selective environment for growth of the non-pathogenic anaerobic bacterium Clostridium sporogenes. Modest anti-tumour activity as a single agent encouraged the use of C. sporogenes as a vector to express therapeutic genes selectively in tumour tissue, a concept termed Clostridium Directed Enzyme Prodrug Therapy (CDEPT). Here, we examine the ability of a recently identified Neisseria meningitidis type I nitroreductase (NmeNTR) to metabolise the prodrug PR-104A in an in vivo model of CDEPT. Human HCT116 colon cancer cells stably over-expressing NmeNTR demonstrated significant sensitivity to PR-104A, the imaging agent EF5, and several nitro(hetero)cyclic anti-infective compounds. Chemical induction of necrosis in human H1299 xenografts by the vascular disrupting agent vadimezan promoted colonisation by NmeNTR-expressing C. sporogenes, and efficacy studies demonstrated moderate but significant anti-tumour activity of spores when compared to untreated controls. Inclusion of the pre-prodrug PR-104 into the treatment schedule provided significant additional activity, indicating proof-of-principle. Successful preclinical evaluation of a transferable gene that enables metabolism of both PET imaging agents (for vector visualisation) and prodrugs (for conditional enhancement of efficacy) is an important step towards the prospect of CDEPT entering clinical evaluation.


Assuntos
Pró-Fármacos , Composição de Bases , Clostridium/genética , Clostridium/metabolismo , Humanos , Filogenia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , RNA Ribossômico 16S , Análise de Sequência de DNA
13.
Mol Cancer Ther ; 20(12): 2372-2383, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625504

RESUMO

Hypoxia-activated prodrugs (HAP) are a promising class of antineoplastic agents that can selectively eliminate hypoxic tumor cells. This study evaluates the hypoxia-selectivity and antitumor activity of CP-506, a DNA alkylating HAP with favorable pharmacologic properties. Stoichiometry of reduction, one-electron affinity, and back-oxidation rate of CP-506 were characterized by fast-reaction radiolytic methods with observed parameters fulfilling requirements for oxygen-sensitive bioactivation. Net reduction, metabolism, and cytotoxicity of CP-506 were maximally inhibited at oxygen concentrations above 1 µmol/L (0.1% O2). CP-506 demonstrated cytotoxicity selectively in hypoxic 2D and 3D cell cultures with normoxic/anoxic IC50 ratios up to 203. Complete resistance to aerobic (two-electron) metabolism by aldo-keto reductase 1C3 was confirmed through gain-of-function studies while retention of hypoxic (one-electron) bioactivation by various diflavin oxidoreductases was also demonstrated. In vivo, the antitumor effects of CP-506 were selective for hypoxic tumor cells and causally related to tumor oxygenation. CP-506 effectively decreased the hypoxic fraction and inhibited growth of a wide range of hypoxic xenografts. A multivariate regression analysis revealed baseline tumor hypoxia and in vitro sensitivity to CP-506 were significantly correlated with treatment response. Our results demonstrate that CP-506 selectively targets hypoxic tumor cells and has broad antitumor activity. Our data indicate that tumor hypoxia and cellular sensitivity to CP-506 are strong determinants of the antitumor effects of CP-506.


Assuntos
Pró-Fármacos/uso terapêutico , Hipóxia Tumoral/efeitos dos fármacos , Animais , Humanos , Camundongos , Pró-Fármacos/farmacologia
14.
Cancers (Basel) ; 13(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572813

RESUMO

Lung cancer is the leading cause of cancer related deaths worldwide. The development of orthotopic mouse models of lung cancer, which recapitulates the disease more realistically compared to the widely used subcutaneous tumor models, is expected to critically aid the development of novel therapies to battle lung cancer or related comorbidities such as cachexia. However, follow-up of tumor take, tumor growth and detection of therapeutic effects is difficult, time consuming and requires a vast number of animals in orthotopic models. Here, we describe a solution for the fully automatic segmentation and quantification of orthotopic lung tumor volume and mass in whole-body mouse computed tomography (CT) scans. The goal is to drastically enhance the efficiency of the research process by replacing time-consuming manual procedures with fast, automated ones. A deep learning algorithm was trained on 60 unique manually delineated lung tumors and evaluated by four-fold cross validation. Quantitative performance metrics demonstrated high accuracy and robustness of the deep learning algorithm for automated tumor volume analyses (mean dice similarity coefficient of 0.80), and superior processing time (69 times faster) compared to manual segmentation. Moreover, manual delineations of the tumor volume by three independent annotators was sensitive to bias in human interpretation while the algorithm was less vulnerable to bias. In addition, we showed that besides longitudinal quantification of tumor development, the deep learning algorithm can also be used in parallel with the previously published method for muscle mass quantification and to optimize the experimental design reducing the number of animals needed in preclinical studies. In conclusion, we implemented a method for fast and highly accurate tumor quantification with minimal operator involvement in data analysis. This deep learning algorithm provides a helpful tool for the noninvasive detection and analysis of tumor take, tumor growth and therapeutic effects in mouse orthotopic lung cancer models.

15.
J Cancer ; 12(19): 5817-5824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475995

RESUMO

Recent evidence established a link between disturbed lipid metabolism and increased risk for cancer. One of the most prominent features related to disturbed lipid metabolism is an increased production of oxidized low-density-lipoproteins (oxLDL), which results from elevated oxidative stress. OxLDL is known to have detrimental effects on healthy cells and plays a primary role in diseases related to the metabolic syndrome. Nevertheless, so far, the exact role of oxLDL in cancer cell metabolism is not yet known. To examine changes in metabolic profile induced by oxLDL, pancreatic KLM-1 cells were treated with oxLDL in a concentration- (25 or 50 µg/ml) and/or time-dependent (4 hr or 8 hr) manner and the impact of oxLDL on oxygen consumption rates (OCR) as well as extracellular acidification rates (ECAR) was analyzed using Seahorse technology. Subsequently, to establish the link between oxLDL and glycolysis, stabilization of the master regulator hypoxia-inducible factor 1-alpha (HIF-1α) was measured by means of Western blot. Furthermore, autophagic responses were assessed by measuring protein levels of the autophagosomal marker LC3B-II. Finally, the therapeutic potential of natural anti-oxLDL IgM antibodies in reversing these effects was tested. Incubation of KLM-1 cells with oxLDL shifted the energy balance towards a more glycolytic phenotype, which is an important hallmark of cancer cells. These data were supported by measurement of increased oxLDL-mediated HIF-1α stabilization. In line, oxLDL incubation also increased the levels of LC3B-II, suggesting an elevated autophagic response. Importantly, antibodies against oxLDL were able to reverse these oxLDL-mediated metabolic effects. Our data provides a novel proof-of-concept that oxLDL induces a shift in energy balance. These data not only support a role for oxLDL in the progression of cancer but also suggest the possibility of targeting oxLDL as a therapeutic option in cancer.

16.
Front Immunol ; 12: 675535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335574

RESUMO

Background & Aims: The lysosomal enzyme, cathepsin D (CTSD) has been implicated in the pathogenesis of non-alcoholic steatohepatitis (NASH), a disease characterised by hepatic steatosis and inflammation. We have previously demonstrated that specific inhibition of the extracellular CTSD leads to improved metabolic features in Sprague-Dawley rats with steatosis. However, the individual roles of extracellular and intracellular CTSD in NASH are not yet known. In the current study, we evaluated the underlying mechanisms of extracellular and intracellular CTSD fractions in NASH-related metabolic inflammation using specific small-molecule inhibitors. Methods: Low-density lipoprotein receptor knock out (Ldlr-/-) mice were fed a high-fat, high cholesterol (HFC) diet for ten weeks to induce NASH. Further, to investigate the effects of CTSD inhibition, mice were injected either with an intracellular (GA-12) or extracellular (CTD-002) CTSD inhibitor or vehicle control at doses of 50 mg/kg body weight subcutaneously once in two days for ten weeks. Results: Ldlr-/- mice treated with extracellular CTSD inhibitor showed reduced hepatic lipid accumulation and an associated increase in faecal bile acid levels as compared to intracellular CTSD inhibitor-treated mice. Furthermore, in contrast to intracellular CTSD inhibition, extracellular CTSD inhibition switched the systemic immune status of the mice to an anti-inflammatory profile. In line, label-free mass spectrometry-based proteomics revealed that extra- and intracellular CTSD fractions modulate proteins belonging to distinct metabolic pathways. Conclusion: We have provided clinically translatable evidence that extracellular CTSD inhibition shows some beneficial metabolic and systemic inflammatory effects which are distinct from intracellular CTSD inhibition. Considering that intracellular CTSD inhibition is involved in essential physiological processes, specific inhibitors capable of blocking extracellular CTSD activity, can be promising and safe NASH drugs.


Assuntos
Catepsina D/fisiologia , Inflamação/etiologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Ácidos e Sais Biliares/análise , Catepsina D/antagonistas & inibidores , Feminino , Inflamação/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteômica , Receptores de LDL/fisiologia
17.
Obes Rev ; 22(10): e13313, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34269511

RESUMO

Coronaviruses are constantly circulating in humans, causing common colds and mild respiratory infections. In contrast, infection with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease-2019 (COVID-19), can cause additional severe complications, particularly in patients with obesity and associated metabolic disturbances. Obesity is a principal causative factor in the development of the metabolic syndrome; a series of physiological, biochemical, clinical, and metabolic factors that increase the risk of obesity-associated diseases. "Metabolically unhealthy" obesity is, in addition to metabolic disturbances, also associated with immunological disturbances. As such, patients with obesity are more prone to develop serious complications from infections, including those from SARS-CoV-2. In this review, we first describe how obesity and related metabolic disturbances increase the risk of SARS-CoV-2 infection. Then, mechanisms contributing to COVID-19 complications and poor prognosis in these patients are discussed. Finally, we discuss how obesity potentially reduces long-term COVID-19 vaccination efficacy. Despite encouraging COVID-19 vaccination results in patients with obesity and related metabolic disturbances in the short-term, it is becoming increasingly evident that long-term COVID-19 vaccination efficacy should be closely monitored in this vulnerable group.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Progressão da Doença , Obesidade/complicações , Obesidade/metabolismo , COVID-19/complicações , COVID-19/imunologia , COVID-19/fisiopatologia , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Vacinação
18.
Front Microbiol ; 12: 669488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168629

RESUMO

Despite a history dating back to the 1800s, using Clostridium bacteria to treat cancer has not advanced beyond the observation that they can colonise and partially destroy solid tumours. Progress has been hampered by their inability to eradicate the viable portion of tumours, and an instinctive anxiety around injecting patients with a bacterium whose close relatives cause tetanus and botulism. However, recent advances in techniques to genetically engineer Clostridium species gives cause to revisit this concept. This paper illustrates these developments through the attenuation of C. sporogenes to enhance its clinical safety, and through the expression and secretion of an immunotherapeutic. An 8.6 kb sequence, corresponding to a haemolysin operon, was deleted from the genome and replaced with a short non-coding sequence. The resultant phenotype of this strain, named C. sporogenes-NT, showed a reduction of haemolysis to levels similar to the probiotic strain, C. butyricum M588. Comparison to the parental strain showed no change in growth or sporulation. Following injection of tumour-bearing mice with purified spores of the attenuated strain, high levels of germination were detected in all tumours. Very low levels of spores and vegetative cells were detected in the spleen and lymph nodes. The new strain was transformed with four different murine IL-2-expressing plasmids, differentiated by promoter and signal peptide sequences. Biologically active mIL-2, recovered from the extracellular fraction of bacterial cultures, was shown to stimulate proliferation of T cells. With this investigation we propose a new, safer candidate for intratumoral delivery of cancer immunotherapeutics.

19.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33688020

RESUMO

BACKGROUND: Poorly immunogenic tumors are hardly responsive to immunotherapies such as immune checkpoint blockade (ICB) and are, therefore, a therapeutic challenge. Combination with other immunotherapies and/or immunogenic therapies, such as radiotherapy (RT), could make these tumors more immune responsive. We have previously shown that the immunocytokine L19-IL2 combined with single-dose RT resulted in 75% tumor remission and a 20% curative abscopal effect in the T cell-inflamed C51 colon carcinoma model. This treatment schedule was associated with the upregulation of inhibitory immune checkpoint (IC) molecules on tumor-infiltrating T cells, leading to only tumor growth delay in the poorly immunogenic Lewis lung carcinoma (LLC) model. METHODS: We aimed to trigger curative therapeutic responses in three tumor models (LLC, C51 and CT26) by "pushing the accelerator" of tumor immunity with L19-IL2 and/or "releasing the brakes" with ICB, such as antibodies directed against cytotoxic T lymphocyte associated protein 4 (CTLA-4), programmed death 1 (PD-1) or its ligand (PD-L1), combined with single-dose RT (10 Gy or 5 Gy). Primary tumor endpoint was defined as time to reach four times the size of tumor volume at start of treatment (4T×SV). Multivariate analysis of 4T×SV was performed using the Cox proportional hazards model comparing each treatment group with controls. Causal involvement of T and natural killer (NK) cells in the anti-tumor effect was assessed by in vivo depletion of T, NK or both cell populations. Immune profiling was performed using flow cytometry on single cell suspensions from spleens, bone marrow, tumors and blood. RESULTS: Combining RT, anti-PD-L1 and L19-IL2 cured 38% of LLC tumors, which was both CD8+ T and NK cell dependent. LLC tumors were resistant to RT +anti-PD-L1 likely explained by the upregulation of other IC molecules and increased T regulatory cell tumor infiltration. RT+L19-IL2 outperformed RT+ICB in C51 tumors; effects were comparable in CT26 tumors. Triple combinations were not superior to RT+L19-IL2 in both these models. CONCLUSIONS: This study demonstrated that combinatorial strategies rationally designed on biological effects can turn immunotherapy-resistant tumors into immunologically responsive tumors. This hypothesis is currently being tested in the international multicentric randomized phase 2 trial: ImmunoSABR (NCT03705403).


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Carcinoma Pulmonar de Lewis/terapia , Quimiorradioterapia , Neoplasias do Colo/terapia , Inibidores de Checkpoint Imunológico/farmacologia , Agentes de Imunomodulação/farmacologia , Neoplasias Pulmonares/terapia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Memória Imunológica/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células T de Memória/efeitos dos fármacos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral
20.
Theranostics ; 10(23): 10548-10562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929365

RESUMO

The use of reporter genes to non-invasively image molecular processes inside cells has significant translational potential, particularly in the context of systemically administered gene therapy vectors and adoptively administered cells such as immune or stem cell based therapies. Bacterial nitroreductase enzymes possess ideal properties for reporter gene imaging applications, being of non-human origin and possessing the ability to metabolize a range of clinically relevant nitro(hetero)cyclic substrates. Methods: A library of eleven Escherichia coli nitroreductase candidates were screened for the ability to efficiently metabolize 2-nitroimidazole based positron emission tomography (PET) probes originally developed as radiotracers for hypoxic cell imaging. Several complementary methods were utilized to detect formation of cell-entrapped metabolites, including various in vitro and in vivo models to establish the capacity of the 2-nitroimidazole PET agent EF5 to quantify expression of a nitroreductase candidate. Proof-of-principle PET imaging studies were successfully conducted using 18F-HX4. Results: Recombinant enzyme kinetics, bacterial SOS reporter assays, anti-proliferative assays and flow cytometry approaches collectively identified the major oxygen-insensitive nitroreductase NfsA from E. coli (NfsA_Ec) as the most promising nitroreductase reporter gene. Cells expressing NfsA_Ec were demonstrably labelled with the imaging agent EF5 in a manner that was quantitatively superior to hypoxia, in monolayers (2D), multicellular layers (3D), and in human tumor xenograft models. EF5 retention correlated with NfsA_Ec positive cell density over a range of EF5 concentrations in 3D in vitro models and in xenografts in vivo and was predictive of in vivo anti-tumor activity of the cytotoxic prodrug PR-104. Following PET imaging with 18F-HX4, a significantly higher tumor-to-blood ratio was observed in two xenograft models for NfsA_Ec expressing tumors compared to the parental tumors thereof, providing verification of this reporter gene imaging approach. Conclusion: This study establishes that the bacterial nitroreductase NfsA_Ec can be utilized as an imaging capable reporter gene, with the ability to metabolize and trap 2-nitroimidazole PET imaging agents for non-invasive imaging of gene expression.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Proteínas de Escherichia coli/administração & dosagem , Genes Reporter , Neoplasias/diagnóstico por imagem , Nitrorredutases/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Antineoplásicos Alquilantes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas de Escherichia coli/genética , Etanidazol/administração & dosagem , Etanidazol/análogos & derivados , Etanidazol/farmacocinética , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacocinética , Células HCT116 , Humanos , Hidrocarbonetos Fluorados/administração & dosagem , Hidrocarbonetos Fluorados/farmacocinética , Imidazóis/administração & dosagem , Indicadores e Reagentes/administração & dosagem , Indicadores e Reagentes/farmacocinética , Camundongos , Imagem Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Compostos de Mostarda Nitrogenada/farmacologia , Compostos de Mostarda Nitrogenada/uso terapêutico , Nitrorredutases/genética , Medicina de Precisão/métodos , Estudo de Prova de Conceito , Compostos Radiofarmacêuticos/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Triazóis/administração & dosagem , Hipóxia Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...