Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(2): 690-696, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425938

RESUMO

Nonconjugated organic radicals with an open-shell radical active group exhibit unique functionality due to their radical pendant site. Compared with the previously studied doped conjugated polymers, radical polymers reveal superior processability, stability, and optical properties. Despite the success of organic radical polymer conductors based on the TEMPO radicals, it still requires potential design substitutions to meet the fundamental limits of charge transport in the radical polymer. To do so, we demonstrate that the amorphous, nonconjugated radical polymer with backbone-pendant group interaction and low glass transition temperature enables the macromolecules to have rapid charge transport in the solid state, resulting in conductivity higher than 32 S m-1. This charge transport is due to the formation of the local ordered regime with an energetically favored orientation caused by the strong coupling between the backbone and pendant group, which can significantly modulate the polymer packing with active electronic communications. The nonconjugate nature of the radical polymer maintains an optical transparency up to 98% at a 1.5 µm thick film. Thus, this effort will be a dramatically advanced model in the organic radical community for the creation of next-generation polymer conductors.

2.
ACS Appl Mater Interfaces ; 14(38): 43538-43546, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36099173

RESUMO

Electronic wastes from transient electronics accumulate biologically harmful materials with global concern. Recycling these wastes could prevent the deposition of hazardous chemicals and toxic materials to the environment while saving scarce natural compounds and valuable resources. Here, we report a sustainable electronic device, taking advantage of carbon resources and a biodegradable cellulose composite. The device consists of an ambient-stable carbon nanotube as a semiconductor, graphene as electrodes, and a free-standing cellulose filter paper/nanocellulose composite as a dielectric layer. The dual-functional cellulose composite acting simultaneously as a robust substrate and a dielectric is demonstrated, which is compatible with solution device fabrication processes. An optimized channel dimension of 5 mm × 3 mm with the addition of ions that facilitates a charge transport realized a device with an on-current per width of 9.6 µA mm-1, an on/off ratio >102, a field-effect mobility of 2.03 cm2 V-1 s-1, and long-term stability over 30 days under ambient conditions. Successful separation of the carbonaceous components via an eco-friendly solution sorting protocol allowed the recycled device to display excellent electronic performance, with a recapture efficiency of 90%. This effort demonstrates a processable, low-cost, and sustainable electronic system that can be applied in the current realm of the semiconducting and sensing industry.

3.
Mar Drugs ; 17(9)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510079

RESUMO

Three new lavandulylated flavonoids, (2S,2''S)-6-lavandulyl-7,4'-dimethoxy-5,2'-dihydroxylflavanone (1), (2S,2''S)-6-lavandulyl-5,7,2',4'-tetrahydroxylflavanone (2), and (2''S)-5'-lavandulyl-2'-methoxy-2,4,4',6'-tetrahydroxylchalcone (3), along with seven known compounds 4-10 were isolated from culture broth of Streptomyces sp. G248. Their structures were established by spectroscopic data analysis, including 1D and 2D nuclear magnetic resonance (NMR), and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The absolute configurations of 1-3 were resolved by comparison of their experimental and calculated electronic circular dichroism spectra. Compounds 1-3 exhibited remarkable antimicrobial activity. Whereas, two known compounds 4 and 5 exhibited inhibitory activity against Mycobacterium tuberculosis H37Rv with minimum inhibitory concentration (MIC) values of 6.0 µg/mL and 11.1 µg/mL, respectively.


Assuntos
Antibióticos Antituberculose/farmacologia , Flavonoides/farmacologia , Poríferos/microbiologia , Streptomyces/química , Animais , Antibióticos Antituberculose/química , Antibióticos Antituberculose/isolamento & purificação , Linhagem Celular Tumoral , Dicroísmo Circular , Flavonoides/química , Flavonoides/isolamento & purificação , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Vietnã
4.
Nat Prod Commun ; 11(3): 401-4, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27169191

RESUMO

Analysis of an antimicrobial extract prepared from culture broth of the marine-derived actinomycete Nocardiopsis sp. (strain G057) led to the isolation of twelve compounds, 1-12. Compound 1 (2-[(2R-hydroxypropanoyl)amino]benzamide) was found to be a new enantiomeric isomer while compounds 2 (3-acetyl-4-hydroxycinnoline) and 3 (3,3'-bis-indole) were isolated from a natural source for the first time. The structures of 1-12 were determined by analyses of MS and 2D NMR data. All compounds were evaluated for their antimicrobial activity against a panel of clinically significant microorganisms. Compound 1 selectively inhibited Escherichia coli (MIC: 16 µg/mL). Compounds 2 and 3 exhibited antimicrobial activity against several strains of both Gram-positive and Gram-negative bacteria, and the yeast Candida albicans. Cytotoxic evaluation of compounds 1-3 against four cancer cell lines (KB, LU-1, HepG-2 and MCF-7) indicated that compound 3 produced a weak inhibition against KB and LU cell lines. Two remaining compounds, 1 and 2 were not cytotoxic, even at the concentration of 128 µg/mL.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Actinobacteria/química , Antibacterianos/química , Antifúngicos/química , Antineoplásicos/química , Estrutura Molecular , Oceanos e Mares , Água do Mar/microbiologia , Vietnã , Microbiologia da Água
5.
Nat Prod Commun ; 11(1): 49-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26996018

RESUMO

Two new compounds, a quinoline alkaloid (1) and a 1,4-dioxane derivative (2), were isolated from culture broth of the marine-derived actinomycete Micromonospora sp. (strain G019) by bioassay-guided fractionation. This actinomycete strain was isolated from sediment, collected at Cát Bà Peninsula, Vietnam. The taxonomic identification was achieved by analysis of 16S rRNA gene sequences. On the basis of morphological and phylogenetic evidence, strain G019 was assigned to the genus Micromonospora. The structures of 1 and 2 were established by spectroscopic data analysis, including one- and two-dimensional NMR, and MS. Compound 1 was found to have antibacterial activity against Escherichia coli (MIC: 48 µg/mL), Salmonella enterica (MIC: 96 µg/mL) and Enterococcus faecalis (MIC: 128 µg/mL), while compound 2 showed inhibitory activity against Enterococcusfaecalis (MIC: 32 µg/mL) and Candida albicans (MIC: 64 µg/mL).


Assuntos
Actinobacteria/metabolismo , Álcoois/farmacologia , Alcaloides/farmacologia , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Dioxanos/farmacologia , Etanol/análogos & derivados , Quinolinas/farmacologia , Actinobacteria/química , Actinobacteria/genética , Álcoois/química , Álcoois/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Antibacterianos/química , Antifúngicos/química , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Dioxanos/química , Dioxanos/metabolismo , Etanol/química , Etanol/metabolismo , Etanol/farmacologia , Sedimentos Geológicos/microbiologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oceanos e Mares , Quinolinas/química , Quinolinas/metabolismo , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...