Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Elife ; 122024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635416

RESUMO

Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/ß. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.


Assuntos
Proteína AIRE , Elementos de DNA Transponíveis , Camundongos , Humanos , Animais , Timo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Timócitos/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL
2.
Leukemia ; 38(5): 1019-1031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627586

RESUMO

The hypomethylating agent 5-azacytidine (AZA) is the first-line treatment for AML patients unfit for intensive chemotherapy. The effect of AZA results in part from T-cell cytotoxic responses against MHC-I-associated peptides (MAPs) deriving from hypermethylated genomic regions such as cancer-testis antigens (CTAs), or endogenous retroelements (EREs). However, evidence supporting higher ERE MAPs presentation after AZA treatment is lacking. Therefore, using proteogenomics, we examined the impact of AZA on the repertoire of MAPs and their source transcripts. AZA-treated AML upregulated both CTA and ERE transcripts, but only CTA MAPs were presented at greater levels. Upregulated ERE transcripts triggered innate immune responses against double-stranded RNAs but were degraded by autophagy, and not processed into MAPs. Autophagy resulted from the formation of protein aggregates caused by AZA-dependent inhibition of DNMT2. Autophagy inhibition had an additive effect with AZA on AML cell proliferation and survival, increased ERE levels, increased pro-inflammatory responses, and generated immunogenic tumor-specific ERE-derived MAPs. Finally, autophagy was associated with a lower abundance of CD8+ T-cell markers in AML patients expressing high levels of EREs. This work demonstrates that AZA-induced EREs are degraded by autophagy and shows that inhibiting autophagy can improve the immune recognition of AML blasts in treated patients.


Assuntos
Antimetabólitos Antineoplásicos , Autofagia , Azacitidina , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Azacitidina/farmacologia , Autofagia/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Proliferação de Células , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia
3.
Sci Adv ; 10(12): eadl4018, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517966

RESUMO

In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.


Assuntos
Cobre , Leucemia Mieloide Aguda , Humanos , Cobre/metabolismo , Fatores de Processamento de RNA/genética , Mutação , Leucemia Mieloide Aguda/genética , Ionóforos/farmacologia , Fosfoproteínas/metabolismo
4.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38463952

RESUMO

Gene transcription is a highly regulated process, and deregulation of transcription factors activity underlies numerous pathologies including cancer. Albeit near four decades of studies have established that the E2F pathway is a core transcriptional network that govern cell division in multi-cellular organisms1,2, the molecular mechanisms that underlie the functions of E2F transcription factors remain incompletely understood. FOXK1 and FOXK2 transcription factors have recently emerged as important regulators of cell metabolism, autophagy and cell differentiation3-6. While both FOXK1 and FOXK2 interact with the histone H2AK119ub deubiquitinase BAP1 and possess many overlapping functions in normal biology, their specific functions as well as deregulation of their transcriptional activity in cancer is less clear and sometimes contradictory7-13. Here, we show that elevated expression of FOXK1, but not FOXK2, in primary normal cells promotes transcription of E2F target genes associated with increased proliferation and delayed entry into cellular senescence. FOXK1 expressing cells are highly prone to cellular transformation revealing important oncogenic properties of FOXK1 in tumor initiation. High expression of FOXK1 in patient tumors is also highly correlated with E2F gene expression. Mechanistically, we demonstrate that FOXK1, but not FOXK2, is specifically modified by O-GlcNAcylation. FOXK1 O-GlcNAcylation is modulated during the cell cycle with the highest levels occurring during the time of E2F pathway activation at G1/S. Moreover, loss of FOXK1 O-GlcNAcylation impairs FOXK1 ability to promote cell proliferation, cellular transformation and tumor growth. Mechanistically, expression of FOXK1 O-GlcNAcylation-defective mutants results in reduced recruitment of BAP1 to gene regulatory regions. This event is associated with a concomitant increase in the levels of histone H2AK119ub and a decrease in the levels of H3K4me1, resulting in a transcriptional repressive chromatin environment. Our results define an essential role of O-GlcNAcylation in modulating the functions of FOXK1 in controlling the cell cycle of normal and cancer cells through orchestration of the E2F pathway.

5.
J Biol Chem ; 300(4): 105778, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395307

RESUMO

The mechanistic target of rapamycin (mTOR) signaling is influenced by multiple regulatory proteins and post-translational modifications; however, underlying mechanisms remain unclear. Here, we report a novel role of small ubiquitin-like modifier (SUMO) in mTOR complex assembly and activity. By investigating the SUMOylation status of core mTOR components, we observed that the regulatory subunit, GßL (G protein ß-subunit-like protein, also known as mLST8), is modified by SUMO1, 2, and 3 isoforms. Using mutagenesis and mass spectrometry, we identified that GßL is SUMOylated at lysine sites K86, K215, K245, K261, and K305. We found that SUMO depletion reduces mTOR-Raptor (regulatory protein associated with mTOR) and mTOR-Rictor (rapamycin-insensitive companion of mTOR) complex formation and diminishes nutrient-induced mTOR signaling. Reconstitution with WT GßL but not SUMOylation-defective KR mutant GßL promotes mTOR signaling in GßL-depleted cells. Taken together, we report for the very first time that SUMO modifies GßL, influences the assembly of mTOR protein complexes, and regulates mTOR activity.


Assuntos
Transdução de Sinais , Sumoilação , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Células HEK293 , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Homólogo LST8 da Proteína Associada a mTOR/metabolismo , Homólogo LST8 da Proteína Associada a mTOR/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Lisina/metabolismo
6.
J Pharmacol Exp Ther ; 388(3): 827-845, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262745

RESUMO

Most idiosyncratic drug reactions (IDRs) appear to be immune-mediated, but mechanistic events preceding severe reaction onset remain poorly defined. Damage-associated molecular patterns (DAMPs) may contribute to both innate and adaptive immune phases of IDRs, and changes in extracellular vesicle (EV) cargo have been detected post-exposure to several IDR-associated drugs. To explore the hypothesis that EVs are also a source of DAMPs in the induction of the immune response preceding drug-induced agranulocytosis, the proteome and immunogenicity of clozapine- (agranulocytosis-associated drug) and olanzapine- (non-agranulocytosis-associated drug) exposed EVs were compared in two preclinical models: THP-1 macrophages and Sprague-Dawley rats. Compared with olanzapine, clozapine induced a greater increase in the concentration of EVs enriched from both cell culture media and rat serum. Moreover, treatment of drug-naïve THP-1 cells with clozapine-exposed EVs induced an inflammasome-dependent response, supporting a potential role for EVs in immune activation. Proteomic and bioinformatic analyses demonstrated an increased number of differentially expressed proteins with clozapine that were enriched in pathways related to inflammation, myeloid cell chemotaxis, wounding, transforming growth factor-ß signaling, and negative regulation of stimuli response. These data indicate that, although clozapine and olanzapine exposure both alter the protein cargo of EVs, clozapine-exposed EVs carry mediators that exhibit significantly greater immunogenicity. Ultimately, this supports the working hypothesis that drugs associated with a risk of IDRs induce cell stress, release of proinflammatory mediators, and early immune activation that precedes severe reaction onset. Further studies characterizing EVs may elucidate biomarkers that predict IDR risk during development of drug candidates. SIGNIFICANCE STATEMENT: This work demonstrates that clozapine, an idiosyncratic drug-induced agranulocytosis (IDIAG)-associated drug, but not olanzapine, a safer structural analogue, induces an acute proinflammatory response and increases extracellular vesicle (EV) release in two preclinical models. Moreover, clozapine-exposed EVs are more immunogenic, as measured by their ability to activate inflammasomes, and contain more differentially expressed proteins, highlighting a novel role for EVs during the early immune response to clozapine and enhancing our mechanistic understanding of IDIAG and other idiosyncratic reactions.


Assuntos
Agranulocitose , Clozapina , Vesículas Extracelulares , Ratos , Animais , Clozapina/efeitos adversos , Clozapina/metabolismo , Olanzapina/efeitos adversos , Proteômica , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo , Agranulocitose/induzido quimicamente , Agranulocitose/metabolismo , Vesículas Extracelulares/metabolismo
7.
Biomed Opt Express ; 15(1): 142-161, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223169

RESUMO

In this study, we use synchrotron-based multi-modal X-ray tomography to examine human cerebellar tissue in three dimensions at two levels of spatial resolution (2.3 µm and 11.9 µm). We show that speckle-based imaging (SBI) produces results that are comparable to propagation-based imaging (PBI), a well-established phase-sensitive imaging method. The different SBI signals provide complementary information, which improves tissue differentiation. In particular, the dark-field signal aids in distinguishing tissues with similar average electron density but different microstructural variations. The setup's high resolution and the imaging technique's excellent phase sensitivity enabled the identification of different cellular layers and additionally, different cell types within these layers. We also correlated this high-resolution phase-contrast information with measured dark-field signal levels. These findings demonstrate the viability of SBI and the potential benefit of the dark-field modality for virtual histology of brain tissue.

8.
Blood Adv ; 8(1): 112-129, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729615

RESUMO

ABSTRACT: Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.


Assuntos
Antineoplásicos , Leucemia Megacarioblástica Aguda , Humanos , Criança , Pré-Escolar , Animais , Camundongos , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patologia , Proteômica , Fatores de Transcrição , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Repressoras
9.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37906288

RESUMO

Hormone receptor-positive breast cancer (HR+) is immunologically cold and has not benefited from advances in immunotherapy. In contrast, subsets of triple-negative breast cancer (TNBC) display high leukocytic infiltration and respond to checkpoint blockade. CD8+ T cells, the main effectors of anticancer responses, recognize MHC I-associated peptides (MAPs). Our work aimed to characterize the repertoire of MAPs presented by HR+ and TNBC tumors. Using mass spectrometry, we identified 57,094 unique MAPs in 26 primary breast cancer samples. MAP source genes highly overlapped between both subtypes. We identified 25 tumor-specific antigens (TSAs) mainly deriving from aberrantly expressed regions. TSAs were most frequently identified in TNBC samples and were more shared among The Cancer Genome Atlas (TCGA) database TNBC than HR+ samples. In the TNBC cohort, the predicted number of TSAs positively correlated with leukocytic infiltration and overall survival, supporting their immunogenicity in vivo. We detected 49 tumor-associated antigens (TAAs), some of which derived from cancer-associated fibroblasts. Functional expansion of specific T cell assays confirmed the in vitro immunogenicity of several TSAs and TAAs. Our study identified attractive targets for cancer immunotherapy in both breast cancer subtypes. The higher prevalence of TSAs in TNBC tumors provides a rationale for their responsiveness to checkpoint blockade.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Antígenos de Neoplasias/genética , Imunoterapia/métodos , Linfócitos T CD8-Positivos/patologia
10.
J Proteome Res ; 23(2): 644-652, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38153093

RESUMO

Identification of K-Ras and B-Raf mutations in colorectal cancer (CRC) is essential to predict patients' response to anti-EGFR therapy and formulate appropriate therapeutic strategies to improve prognosis and survival. Here, we combined parallel reaction monitoring (PRM) with high-field asymmetric waveform ion mobility (FAIMS) to enhance mass spectrometry sensitivity and improve the identification of low-abundance K-Ras and B-Raf mutations in biological samples without immunoaffinity enrichment. In targeted LC-MS/MS analyses, FAIMS reduced the occurrence of interfering ions and enhanced precursor ion purity, resulting in a 3-fold improvement in the detection limit for K-Ras and B-Raf mutated peptides. In addition, the ion mobility separation of isomeric peptides using FAIMS facilitated the unambiguous identification of K-Ras G12D and G13D peptides. The application of targeted LC-MS/MS analyses using FAIMS is demonstrated for the detection and quantitation of B-Raf V600E, K-Ras G12D, G13D, and G12V in CRC cell lines and primary specimens.


Assuntos
Neoplasias Colorretais , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Peptídeos/química , Proteínas Proto-Oncogênicas B-raf/genética , Mutação , Neoplasias Colorretais/genética , Íons/química
11.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698928

RESUMO

Sialidosis is an ultra-rare multisystemic lysosomal disease caused by mutations in the neuraminidase 1 (NEU1) gene. The severe type II form of the disease manifests with a prenatal/infantile or juvenile onset, bone abnormalities, severe neuropathology, and visceromegaly. A subset of these patients present with nephrosialidosis, characterized by abrupt onset of fulminant glomerular nephropathy. We studied the pathophysiological mechanism of the disease in 2 NEU1-deficient mouse models, a constitutive Neu1-knockout, Neu1ΔEx3, and a conditional phagocyte-specific knockout, Neu1Cx3cr1ΔEx3. Mice of both strains exhibited terminal urinary retention and severe kidney damage with elevated urinary albumin levels, loss of nephrons, renal fibrosis, presence of storage vacuoles, and dysmorphic mitochondria in the intraglomerular and tubular cells. Glycoprotein sialylation in glomeruli, proximal distal tubules, and distal tubules was drastically increased, including that of an endocytic reabsorption receptor megalin. The pool of megalin bearing O-linked glycans with terminal galactose residues, essential for protein targeting and activity, was reduced to below detection levels. Megalin levels were severely reduced, and the protein was directed to lysosomes instead of the apical membrane. Together, our results demonstrated that desialylation by NEU1 plays a crucial role in processing and cellular trafficking of megalin and that NEU1 deficiency in sialidosis impairs megalin-mediated protein reabsorption.


Assuntos
Nefropatias , Mucolipidoses , Animais , Humanos , Camundongos , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mucolipidoses/genética , Mucolipidoses/patologia , Neuraminidase/genética
12.
Genome Biol ; 24(1): 188, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582761

RESUMO

MHC-I-associated peptides deriving from non-coding genomic regions and mutations can generate tumor-specific antigens, including neoantigens. Quantifying tumor-specific antigens' RNA expression in malignant and benign tissues is critical for discriminating actionable targets. We present BamQuery, a tool attributing an exhaustive RNA expression to MHC-I-associated peptides of any origin from bulk and single-cell RNA-sequencing data. We show that many cryptic and mutated tumor-specific antigens can derive from multiple discrete genomic regions, abundantly expressed in normal tissues. BamQuery can also be used to predict MHC-I-associated peptides immunogenicity and identify actionable tumor-specific antigens de novo.


Assuntos
Neoplasias , Proteogenômica , Humanos , Antígenos de Neoplasias/genética , Antígenos de Histocompatibilidade Classe I , Neoplasias/genética , Peptídeos/genética , RNA
13.
Cell Rep Methods ; 3(6): 100511, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37426761

RESUMO

The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.


Assuntos
Microfluídica , Neoplasias , Humanos , Espectrometria de Massas/métodos , Antígenos de Histocompatibilidade Classe I , Antígenos HLA , Antígenos de Neoplasias
14.
J Proteome Res ; 22(8): 2765-2773, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37463329

RESUMO

Current protocols used to extract and purify histones are notoriously tedious, especially when using yeast cells. Here, we describe the use of a simple filter-aided sample preparation approach enabling histone extraction from yeast and mammalian cells using acidified ethanol, which not only improves extraction but also inactivates histone-modifying enzymes. We show that our improved method prevents N-terminal clipping of H3, an artifact frequently observed in yeast cells using standard histone extraction protocols. Our method is scalable and provides efficient recovery of histones when extracts are prepared from as few as two million yeast cells. We further demonstrate the application of this approach for the analysis of histone modifications in fungal clinical isolates available in a limited quantity. Compared with standard protocols, our method enables the study of histones and their modifications in a faster, simpler, and more robust manner.


Assuntos
Histonas , Saccharomyces cerevisiae , Animais , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Processamento de Proteína Pós-Traducional , Código das Histonas , Mamíferos/metabolismo
15.
Open Biol ; 13(7): 230104, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463656

RESUMO

Mitotic exit requires the dephosphorylation of many proteins whose phosphorylation was needed for mitosis. Protein phosphatase 2A with its B55 regulatory subunit (PP2A-B55) promotes this transition. However, the events and substrates that it regulates are incompletely understood. We used proteomic approaches in Drosophila to identify proteins that interact with and are dephosphorylated by PP2A-B55. Among several candidates, we identified emerin (otefin in Drosophila). Emerin resides in the inner nuclear membrane and interacts with the DNA-binding protein barrier-to-autointegration factor (BAF) via a LEM domain. We found that the phosphorylation of emerin at Ser50 and Ser54 near its LEM domain negatively regulates its association with BAF, lamin and additional emerin in mitosis. We show that dephosphorylation of emerin at these sites by PP2A-B55 determines the timing of nuclear envelope reformation. Genetic experiments indicate that this regulation is required during embryonic development. Phosphoregulation of the emerin-BAF complex formation by PP2A-B55 appears as a key event of mitotic exit that is likely conserved across species.


Assuntos
Drosophila , Membrana Nuclear , Animais , Drosophila/metabolismo , Membrana Nuclear/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteômica , Mitose
16.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205480

RESUMO

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with Ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs), Ubp2 and Ubp14, and E3 ligases, Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the Ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the Intranuclear Quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with Ribosomopathies.

17.
Sci Rep ; 13(1): 6996, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117518

RESUMO

Phase-contrast computed tomography can visualize soft tissue samples with high contrast. At coherent sources, propagation-based imaging (PBI) techniques are among the most common, as they are easy to implement and produce high-resolution images. Their downside is a low degree of quantitative data due to simplifying assumptions of the sample properties in the reconstruction. These assumptions can be avoided, by using quantitative phase-contrast techniques as an alternative. However, these often compromise spatial resolution and require complicated setups. In order to overcome this limitation, we designed and constructed a new imaging setup using a 2D Talbot array illuminator as a wavefront marker and speckle-based imaging phase-retrieval techniques. We developed a post-processing chain that can compensate for wavefront marker drifts and that improves the overall sensitivity. By comparing two measurements of biomedical samples, we demonstrate that the spatial resolution of our setup is comparable to the one of PBI scans while being able to successfully image a sample that breaks the typical homogeneity assumption used in PBI.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X , Raios X , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Microscopia de Contraste de Fase
18.
Cancer Immunol Immunother ; 72(7): 2375-2392, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36943460

RESUMO

Immunotherapeutic strategies aimed at enhancing tumor cell killing by tumor-specific T cells hold great potential for reducing tumor burden and prolonging survival of cancer patients. Although many potential tumor antigens have been described, identifying relevant targets when designing anti-cancer vaccines or targeted cell therapies remains a challenge. To identify novel, potentially immunogenic candidate tumor antigens, we performed integrated tumor transcriptomic, seromic, and proteomic analyses of high grade serous ovarian cancer (HGSC) patient tumor samples. We identified tumor neo-antigens and over-expressed antigens using whole exome and RNA sequencing and examined these in relation to patient-matched auto-antibody repertoires. Focusing on MHC class I epitopes recognized by CD8+ T cells, HLA-binding epitopes were identified or predicted from the highly expressed, mutated, or auto-antibody target antigen, or MHC-associated peptides (MAPs). Recognition of candidate antigenic peptides was assessed within the tumor-infiltrating T lymphocyte (TIL) population expanded from each patient. Known tumor-associated antigens (TAA) and cancer/testis antigens (CTA) were commonly found in the auto-antibody and MAP repertoires and CD8+ TILs recognizing epitopes from these antigens were detected, although neither expression level nor the presence of auto-antibodies correlated with TIL recognition. Auto-antibodies against tumor-mutated antigens were found in most patients, however, no TIL recognition of the highest predicted affinity neo-epitopes was detected. Using high expression level, auto-antibody recognition, and epitope prediction algorithms, we identified epitopes in 5 novel antigens (MOB1A, SOCS3, TUBB, PRKAR1A, CCDC6) recognized by HGSC patient TILs. Furthermore, selection of epitopes from the MAP repertoire identified 5 additional targets commonly recognized by multiple patient TILs. We find that the repertoire of TIL specificities includes recognition of highly expressed and immunogenic self-antigens that are processed and presented by tumors. These results indicate an ongoing autoimmune response against a range of self-antigens targeted by HGSC TILs.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias Ovarianas , Masculino , Humanos , Feminino , Epitopos/metabolismo , Linfócitos T CD8-Positivos , Proteômica , Multiômica , Antígenos de Neoplasias , Peptídeos , Autoantígenos , Epitopos de Linfócito T
19.
J Proteome Res ; 22(5): 1492-1500, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961377

RESUMO

Proteomic diversity in biological samples can be characterized by mass spectrometry (MS)-based proteomics using customized protein databases generated from sets of transcripts previously detected by RNA-seq. This diversity has only been increased by the recent discovery that many translated alternative open reading frames rest unannotated at unsuspected locations of mRNAs and ncRNAs. These novel protein products, termed alternative proteins, have been left out of all previous custom database generation tools. Consequently, genetic variations that impact alternative open reading frames and variant peptides from their translated proteins are not detectable with current computational workflows. To fill this gap, we present OpenCustomDB, a bioinformatics tool that uses sample-specific RNaseq data to identify genomic variants in canonical and alternative open reading frames, allowing for more than one coding region per transcript. In a test reanalysis of a cohort of 16 patients with acute myeloid leukemia, 5666 peptides from alternative proteins were detected, including 201 variant peptides. We also observed that a significant fraction of peptide-spectrum matches previously assigned to peptides from canonical proteins got better scores when reassigned to peptides from alternative proteins. Custom protein libraries that include sample-specific sequence variations of all possible open reading frames are promising contributions to the development of proteomics and precision medicine. The raw and processed proteomics data presented in this study can be found in PRIDE repository with accession number PXD029240.


Assuntos
Proteínas , Proteômica , Humanos , Proteômica/métodos , Bases de Dados de Proteínas , Fases de Leitura Aberta , Proteínas/genética , Peptídeos/genética , Peptídeos/análise
20.
Commun Biol ; 6(1): 134, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725983

RESUMO

DDX3X is a mammalian RNA helicase that regulates RNA metabolism, cancers, innate immunity and several RNA viruses. We discovered that herpes simplex virus 1, a nuclear DNA replicating virus, redirects DDX3X to the nuclear envelope where it surprisingly modulates the exit of newly assembled viral particles. DDX3X depletion also leads to an accumulation of virions in intranuclear herniations. Mechanistically, we show that DDX3X physically and functionally interacts with the virally encoded nuclear egress complex at the inner nuclear membrane. DDX3X also binds to and stimulates the incorporation in mature particles of pUs3, a herpes kinase that promotes viral nuclear release across the outer nuclear membrane. Overall, the data highlights two unexpected roles for an RNA helicase during the passage of herpes simplex viral particles through the nuclear envelope. This reveals a highly complex interaction between DDX3X and viruses and provides new opportunities to target viral propagation.


Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 1 , Animais , Herpesvirus Humano 1/genética , Proteínas Virais/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...