Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(17): eadm9281, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657074

RESUMO

Critical aspects of physiology and cell function exhibit self-sustained ~24-hour variations termed circadian rhythms. In the liver, circadian rhythms play fundamental roles in maintaining organ homeostasis. Here, we established and characterized an in vitro liver experimental system in which primary human hepatocytes display self-sustained oscillations. By generating gene expression profiles of these hepatocytes over time, we demonstrated that their transcriptional state is dynamic across 24 hours and identified a set of cycling genes with functions related to inflammation, drug metabolism, and energy homeostasis. We designed and tested a treatment protocol to minimize atorvastatin- and acetaminophen-induced hepatotoxicity. Last, we documented circadian-dependent induction of pro-inflammatory cytokines when triggered by LPS, IFN-ß, or Plasmodium infection in human hepatocytes. Collectively, our findings emphasize that the phase of the circadian cycle has a robust impact on the efficacy and toxicity of drugs, and we provide a test bed to study the timing and magnitude of inflammatory responses over the course of infection in human liver.


Assuntos
Ritmo Circadiano , Hepatócitos , Inflamação , Fígado , Humanos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Inflamação/metabolismo , Fígado/metabolismo , Acetaminofen/farmacologia , Atorvastatina/farmacologia , Citocinas/metabolismo , Inativação Metabólica , Lipopolissacarídeos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Cultivadas
2.
iScience ; 26(2): 105940, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36718363

RESUMO

Malaria eradication requires the development of new drugs to combat drug-resistant parasites. We identified bisbenzylisoquinoline alkaloids isolated from Cocculus hirsutus that are active against Plasmodium falciparum blood stages. Synthesis of a library of 94 hemi-synthetic derivatives allowed to identify compound 84 that kills multi-drug resistant clinical isolates in the nanomolar range (median IC50 ranging from 35 to 88 nM). Chemical optimization led to compound 125 with significantly improved preclinical properties. 125 delays the onset of parasitemia in Plasmodium berghei infected mice and inhibits P. falciparum transmission stages in vitro (culture assays), and in vivo using membrane feeding assay in the Anopheles stephensi vector. Compound 125 also impairs P. falciparum development in sporozoite-infected hepatocytes, in the low micromolar range. Finally, by chemical pull-down strategy, we characterized the parasite interactome with trilobine derivatives, identifying protein partners belonging to metabolic pathways that are not targeted by the actual antimalarial drugs or implicated in drug-resistance mechanisms.

3.
Nat Commun ; 13(1): 4123, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840625

RESUMO

Plasmodium vivax is the most widespread human malaria parasite. Due to the presence of extravascular reservoirs and relapsing infections from dormant liver stages, P. vivax is particularly difficult to control and eliminate. Experimental research is hampered by the inability to maintain P. vivax cultures in vitro, due to its tropism for immature red blood cells (RBCs). Here, we describe a new humanized mice model that can support efficient human erythropoiesis and maintain long-lasting multiplication of inoculated cryopreserved P. vivax parasites and their sexual differentiation, including in bone marrow. Mature gametocytes were transmitted to Anopheles mosquitoes, which led to the formation of salivary gland sporozoites. Importantly, blood-stage P. vivax parasites were maintained after the secondary transfer of fresh or frozen infected bone marrow cells to naïve chimeras. This model provides a unique tool for investigating, in vivo, the biology of intraerythrocytic P. vivax.


Assuntos
Anopheles , Malária Vivax , Animais , Anopheles/parasitologia , Humanos , Malária Vivax/parasitologia , Camundongos , Recidiva Local de Neoplasia , Plasmodium vivax , Esporozoítos
4.
J Infect Dis ; 225(9): 1621-1625, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34453537

RESUMO

We adapted the RNA FISH Stellaris method to specifically detect the expression of Plasmodium genes by flow cytometry and ImageStream (Flow-FISH). This new method accurately quantified the erythrocytic forms of (1) Plasmodium falciparum and Plasmodium vivax and (2) the sexual stages of P vivax from patient isolates. ImageStream analysis of liver stage sporozoites using a combination of surface circumsporozoite protein (CSP), deoxyribonucleic acid, and 18S RNA labeling proved that the new Flow-FISH is suitable for gene expression studies of transmission stages. This powerful multiparametric single-cell method offers a platform of choice for both applied and fundamental research on the biology of malaria parasites.


Assuntos
Malária , Esporozoítos , Animais , Expressão Gênica , Humanos , Malária/parasitologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , RNA
5.
Proc Natl Acad Sci U S A ; 116(35): 17498-17508, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31413195

RESUMO

Transmission of Plasmodium falciparum involves a complex process that starts with the ingestion of gametocytes by female Anopheles mosquitoes during a blood meal. Activation of gametocytes in the mosquito midgut triggers "rounding up" followed by egress of both male and female gametes. Egress requires secretion of a perforin-like protein, PfPLP2, from intracellular vesicles to the periphery, which leads to destabilization of peripheral membranes. Male gametes also develop flagella, which assist in binding female gametes for fertilization. This process of gametogenesis, which is key to malaria transmission, involves extensive membrane remodeling as well as vesicular discharge. Phospholipase A2 enzymes (PLA2) are known to mediate membrane remodeling and vesicle secretion in diverse organisms. Here, we show that a P. falciparum patatin-like phospholipase (PfPATPL1) with PLA2 activity plays a key role in gametogenesis. Conditional deletion of the gene encoding PfPATPL1 does not affect P. falciparum blood stage growth or gametocyte development but reduces efficiency of rounding up, egress, and exflagellation of gametocytes following activation. Interestingly, deletion of the PfPATPL1 gene inhibits secretion of PfPLP2, reducing the efficiency of gamete egress. Deletion of PfPATPL1 also reduces the efficiency of oocyst formation in mosquitoes. These studies demonstrate that PfPATPL1 plays a role in gametogenesis, thereby identifying PLA2 phospholipases such as PfPATPL1 as potential targets for the development of drugs to block malaria transmission.


Assuntos
Gametogênese , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Fosfolipases/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Biologia Computacional/métodos , Humanos , Estágios do Ciclo de Vida , Fosfolipases/genética , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/genética , Deleção de Sequência
6.
Nat Microbiol ; 3(11): 1224-1233, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349082

RESUMO

The circumsporozoite protein (CSP) is the major surface protein of malaria sporozoites (SPZs), the motile and invasive parasite stage inoculated in the host skin by infected mosquitoes. Antibodies against the central CSP repeats of different plasmodial species are known to block SPZ infectivity1-5, but the precise mechanism by which these effectors operate is not completely understood. Here, using a rodent Plasmodium yoelii malaria model, we show that sterile protection mediated by anti-P. yoelii CSP humoral immunity depends on the parasite inoculation into the host skin, where antibodies inhibit motility and kill P. yoelii SPZs via a characteristic 'dotty death' phenotype. Passive transfer of an anti-repeat monoclonal antibody (mAb) recapitulates the skin inoculation-dependent protection, in a complement- and Fc receptor γ-independent manner. This purified mAb also decreases motility and, notably, induces the dotty death of P. yoelii SPZs in vitro. Cytotoxicity is species-transcendent since cognate anti-CSP repeat mAbs also kill Plasmodium berghei and Plasmodium falciparum SPZs. mAb cytotoxicity requires the actomyosin motor-dependent translocation and stripping of the protective CSP surface coat, rendering the parasite membrane susceptible to the SPZ pore-forming-like protein secreted to wound and traverse the host cell membrane6. The loss of SPZ fitness caused by anti-P. yoelii CSP repeat antibodies is thus a dynamic process initiated in the host skin where SPZs either stop moving7, or migrate and traverse cells to progress through the host tissues7-9 at the eventual expense of their own life.


Assuntos
Anticorpos Antiprotozoários/farmacologia , Malária/imunologia , Plasmodium yoelii/imunologia , Proteínas de Protozoários/imunologia , Pele/parasitologia , Animais , Anticorpos Monoclonais/farmacologia , Movimento Celular/efeitos dos fármacos , Culicidae , Feminino , Camundongos , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Plasmodium yoelii/citologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Esporozoítos/citologia , Esporozoítos/imunologia
7.
Sci Rep ; 7(1): 9129, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831137

RESUMO

While most subunit malaria vaccines provide only limited efficacy, pre-erythrocytic and erythrocytic genetically attenuated parasites (GAP) have been shown to confer complete sterilizing immunity. We recently generated a Plasmodium berghei (PbNK65) parasite that lacks a secreted factor, the histamine releasing factor (HRF) (PbNK65 hrfΔ), and induces in infected mice a self-resolving blood stage infection accompanied by a long lasting immunity. Here, we explore the immunological mechanisms underlying the anti-parasite protective properties of the mutant PbNK65 hrfΔ and demonstrate that in addition to an up-regulation of IL-6 production, CD4+ but not CD8+ T effector lymphocytes are indispensable for the clearance of malaria infection. Maintenance of T cell-associated protection is associated with the reduction in CD4+PD-1+ and CD8+PD-1+ T cell numbers. A higher number of central and effector memory B cells in mutant-infected mice also plays a pivotal role in protection. Importantly, we also demonstrate that prior infection with WT parasites followed by a drug cure does not prevent the induction of PbNK65 hrfΔ-induced protection, suggesting that such protection in humans may be efficient even in individuals that have been infected and who repeatedly received antimalarial drugs.


Assuntos
Biomarcadores Tumorais/genética , Interações Hospedeiro-Parasita , Memória Imunológica , Malária/imunologia , Malária/parasitologia , Plasmodium/genética , Plasmodium/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citocinas , Modelos Animais de Doenças , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Expressão Gênica , Estágios do Ciclo de Vida , Camundongos , Plasmodium/crescimento & desenvolvimento , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Deleção de Sequência , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Proteína Tumoral 1 Controlada por Tradução
8.
Cell Host Microbe ; 20(5): 618-630, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27832590

RESUMO

Surface-associated TRAP (thrombospondin-related anonymous protein) family proteins are conserved across the phylum of apicomplexan parasites. TRAP proteins are thought to play an integral role in parasite motility and cell invasion by linking the extracellular environment with the parasite submembrane actomyosin motor. Blood stage forms of the malaria parasite Plasmodium express a TRAP family protein called merozoite-TRAP (MTRAP) that has been implicated in erythrocyte invasion. Using MTRAP-deficient mutants of the rodent-infecting P. berghei and human-infecting P. falciparum parasites, we show that MTRAP is dispensable for erythrocyte invasion. Instead, MTRAP is essential for gamete egress from erythrocytes, where it is necessary for the disruption of the gamete-containing parasitophorous vacuole membrane, and thus for parasite transmission to mosquitoes. This indicates that motor-binding TRAP family members function not just in parasite motility and cell invasion but also in membrane disruption and cell egress.


Assuntos
Eritrócitos/parasitologia , Exocitose , Merozoítos/fisiologia , Plasmodium berghei/fisiologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Vacúolos/parasitologia , Animais , Culicidae , Humanos , Membranas/metabolismo , Camundongos
9.
J Exp Med ; 213(8): 1419-28, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27432939

RESUMO

Although most vaccines against blood stage malaria in development today use subunit preparations, live attenuated parasites confer significantly broader and more lasting protection. In recent years, Plasmodium genetically attenuated parasites (GAPs) have been generated in rodent models that cause self-resolving blood stage infections and induce strong protection. All such GAPs generated so far bear mutations in housekeeping genes important for parasite development in red blood cells. In this study, using a Plasmodium berghei model compatible with tracking anti-blood stage immune responses over time, we report a novel blood stage GAP that lacks a secreted factor related to histamine-releasing factor (HRF). Lack of HRF causes an IL-6 increase, which boosts T and B cell responses to resolve infection and leave a cross-stage, cross-species, and lasting immunity. Mutant-induced protection involves a combination of antiparasite IgG2c antibodies and FcγR(+) CD11b(+) cell phagocytes, especially neutrophils, which are sufficient to confer protection. This immune-boosting GAP highlights an important role of opsonized parasite-mediated phagocytosis, which may be central to protection induced by all self-resolving blood stage GAP infections.


Assuntos
Biomarcadores Tumorais/genética , Malária , Plasmodium berghei , Proteínas de Protozoários , Linfócitos T/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Linfócitos B/imunologia , Modelos Animais de Doenças , Feminino , Imunoglobulina G/imunologia , Interleucina-6/imunologia , Malária/genética , Malária/imunologia , Camundongos , Neutrófilos/imunologia , Fagocitose/imunologia , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteína Tumoral 1 Controlada por Tradução
10.
Proc Natl Acad Sci U S A ; 113(17): 4717-22, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071116

RESUMO

The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/parasitologia , Plasmodium falciparum/fisiologia , Infecções por Protozoários/parasitologia , Proteínas de Protozoários/metabolismo , RNA de Transferência/metabolismo , Animais , Apicomplexa/parasitologia , Apicomplexa/patogenicidade , Células Cultivadas , Interações Hospedeiro-Patógeno/fisiologia , Malária , Camundongos , Plasmodium falciparum/patogenicidade , Transporte Proteico , Infecções por Protozoários/metabolismo
11.
Cell Microbiol ; 18(3): 399-412, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26347246

RESUMO

Export of most malaria proteins into the erythrocyte cytosol requires the Plasmodium translocon of exported proteins (PTEX) and a cleavable Plasmodium export element (PEXEL). In contrast, the contribution of PTEX in the liver stages and export of liver stage proteins is unknown. Here, using the FLP/FRT conditional mutatagenesis system, we generate transgenic Plasmodium berghei parasites deficient in EXP2, the putative pore-forming component of PTEX. Our data reveal that EXP2 is important for parasite growth in the liver and critical for parasite transition to the blood, with parasites impaired in their ability to generate a patent blood-stage infection. Surprisingly, whilst parasites expressing a functional PTEX machinery can efficiently export a PEXEL-bearing GFP reporter into the erythrocyte cytosol during a blood stage infection, this same reporter aggregates in large accumulations within the confines of the parasitophorous vacuole membrane during hepatocyte growth. Notably HSP101, the putative molecular motor of PTEX, could not be detected during the early liver stages of infection, which may explain why direct protein translocation of this soluble PEXEL-bearing reporter or indeed native PEXEL proteins into the hepatocyte cytosol has not been observed. This suggests that PTEX function may not be conserved between the blood and liver stages of malaria infection.


Assuntos
Malária/parasitologia , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/metabolismo , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/metabolismo , Interações Hospedeiro-Parasita , Fígado/parasitologia , Camundongos , Plasmodium berghei/genética , Transporte Proteico/genética , Proteínas de Protozoários/genética , Tetraciclinas/farmacologia
12.
Cell Microbiol ; 17(4): 542-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25329441

RESUMO

Plasmodium spp., which causes malaria, produces a histamine-releasing factor (HRF), an orthologue of mammalian HRF. Histamine-releasing factor produced by erythrocytic stages of the parasite is thought to play a role in the pathogenesis of severe malaria. Here, we show in a rodent model that HRF is not important during the erythrocytic but pre-erythrocytic phase of infection, which mainly consists in the transformation in the liver of the mosquito-injected parasite form into the erythrocyte-infecting form. Development of P. berghei ANKA cl15cy1 liver stages lacking HRF is impaired and associated with an early rise in systemic IL-6, a cytokine that strongly suppresses development of Plasmodium liver stages. The defect is rescued by injection of anti-IL-6 antibodies or infection in IL-6-deficient mice and parasite HRF is sufficient to decrease IL-6 synthesis, indicating a direct role of parasite HRF in reducing host IL-6. The target cells modulated by HRF for IL-6 production at early time points during liver infection are neutrophils. Parasite HRF is thus used to down-regulate a cytokine with anti-parasite activity. Our data also highlight the link between a prolonged transition from liver to blood-stage infection and reduced incidence of experimental cerebral malaria.


Assuntos
Biomarcadores Tumorais/metabolismo , Interações Hospedeiro-Patógeno , Interleucina-6/antagonistas & inibidores , Fígado/parasitologia , Malária/patologia , Plasmodium berghei/fisiologia , Animais , Modelos Animais de Doenças , Fígado/patologia , Camundongos , Camundongos Knockout , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Resultado do Tratamento , Proteína Tumoral 1 Controlada por Tradução
13.
EMBO Mol Med ; 6(11): 1387-97, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25257508

RESUMO

The malaria parasite, Plasmodium, requires iron for growth, but how it imports iron remains unknown. We characterize here a protein that belongs to the ZIP (Zrt-, Irt-like Protein) family of metal ion transport proteins and have named ZIP domain-containing protein (ZIPCO). Inactivation of the ZIPCO-encoding gene in Plasmodium berghei, while not affecting the parasite's ability to multiply in mouse blood and to infect mosquitoes, greatly impairs its capacity to develop inside hepatocytes. Iron/zinc supplementation and depletion experiments suggest that ZIPCO is required for parasite utilization of iron and possibly zinc, consistent with its predicted function as a metal transporter. This is the first report of a ZIP protein having a crucial role in Plasmodium liver-stage development, as well as the first metal ion transporter identified in Plasmodium pre-erythrocytic stages. Because of the drastic dependence on iron of Plasmodium growth, ZIPCO and related proteins might constitute attractive drug targets to fight against malaria.


Assuntos
Ferro/metabolismo , Fígado/parasitologia , Malária/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Sequência de Aminoácidos , Animais , Anopheles , Feminino , Técnicas de Inativação de Genes , Células Hep G2 , Hepatócitos/parasitologia , Humanos , Íons/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Filogenia , Plasmodium berghei/genética , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
14.
Cell Microbiol ; 16(5): 768-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24617597

RESUMO

Calcium is a key signalling molecule in apicomplexan parasites and plays an important role in diverse processes including gliding motility. Gliding is essential for the malaria parasite to migrate from the skin to the liver as well as to invade host tissues and cells. Here we investigated the dynamics of intracellular Ca(2+) in the motility of Plasmodium berghei sporozoites by live imaging and flow cytometry. We found that cytosolic levels of Ca(2+) increase when sporozoites are activated in suspension, which is sufficient to induce the secretion of integrin-like adhesins that are essential for gliding motility. By increasing intracellular Ca(2+) levels artificially with an ionophore, these adhesins are secreted onto the sporozoite surface, however, the parasite is not capable of gliding. A second level of Ca(2+) modulation was observed during attachment to and detachment from a solid substrate, leading to a further increase or a decrease in the cytoplasmic levels of Ca(2+) respectively. We also observed oscillations in the intracellular Ca(2+) level during gliding. Finally, an intracellular Ca(2+) chelator, an inhibitor of phosphoinositide-specific phospholipase C (PI-PLC), and an inhibitor of the inositol triphosphate (IP3) receptor blocked the rise in intracellular Ca(2+) , adhesin secretion, and motility of activated sporozoites, indicating that intracellular stores supply Ca(2+) during sporozoite gliding. Our study indicates that a rise in intracellular Ca(2+) is necessary but not sufficient to activate gliding, that Ca(2+) levels are modulated in several ways during motility, and that a PI-PLC/IP3 pathway regulates Ca(2+) release during the process of sporozoite locomotion.


Assuntos
Cálcio/análise , Citosol/química , Locomoção , Plasmodium berghei/fisiologia , Esporozoítos/fisiologia , Adesão Celular , Citometria de Fluxo , Imagem Óptica , Plasmodium berghei/química , Esporozoítos/química
15.
J Biol Chem ; 288(46): 33336-46, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24089525

RESUMO

In their mammalian host, Plasmodium parasites have two obligatory intracellular development phases, first in hepatocytes and subsequently in erythrocytes. Both involve an orchestrated process of invasion into and egress from host cells. The Plasmodium SUB1 protease plays a dual role at the blood stage by enabling egress of the progeny merozoites from the infected erythrocyte and priming merozoites for subsequent erythrocyte invasion. Here, using conditional mutagenesis in P. berghei, we show that SUB1 plays an essential role at the hepatic stage. Stage-specific sub1 invalidation during prehepatocytic development showed that SUB1-deficient parasites failed to rupture the parasitophorous vacuole membrane and to egress from hepatocytes. Furthermore, mechanically released parasites were not adequately primed and failed to establish a blood stage infection in vivo. The critical involvement of SUB1 in both pre-erythrocytic and erythrocytic developmental phases qualifies SUB1 as an attractive multistage target for prophylactic and therapeutic anti-Plasmodium intervention strategies.


Assuntos
Hepatócitos/parasitologia , Malária/metabolismo , Plasmodium berghei/enzimologia , Proteínas de Protozoários/metabolismo , Subtilisinas/metabolismo , Vacúolos/parasitologia , Animais , Hepatócitos/metabolismo , Hepatócitos/patologia , Malária/patologia , Malária/terapia , Camundongos , Mutagênese , Plasmodium berghei/genética , Proteínas de Protozoários/genética , Subtilisinas/genética , Vacúolos/metabolismo , Vacúolos/patologia
16.
Nat Commun ; 4: 2552, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24108241

RESUMO

Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1-rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans.


Assuntos
Antígenos de Protozoários/genética , Interações Hospedeiro-Parasita , Proteínas de Membrana/genética , Plasmodium berghei/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/metabolismo , Sequência Conservada , Feminino , Deleção de Genes , Expressão Gênica , Malária/parasitologia , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidade , Ligação Proteica , Proteínas de Protozoários/metabolismo , Ratos , Ratos Wistar , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia
17.
J Exp Med ; 210(5): 905-15, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23610126

RESUMO

Malaria infection starts when the sporozoite stage of the Plasmodium parasite is injected into the skin by a mosquito. Sporozoites are known to traverse host cells before finally invading a hepatocyte and multiplying into erythrocyte-infecting forms, but how sporozoites reach hepatocytes in the liver and the role of host cell traversal (CT) remain unclear. We report the first quantitative imaging study of sporozoite liver infection in rodents. We show that sporozoites can cross the liver sinusoidal barrier by multiple mechanisms, targeting Kupffer cells (KC) or endothelial cells and associated or not with the parasite CT activity. We also show that the primary role of CT is to inhibit sporozoite clearance by KC during locomotion inside the sinusoid lumen, before crossing the barrier. By being involved in multiple steps of the sporozoite journey from the skin to the final hepatocyte, the parasite proteins mediating host CT emerge as ideal antibody targets for vaccination against the parasite.


Assuntos
Movimento Celular , Interações Hospedeiro-Parasita/imunologia , Fígado/patologia , Fígado/parasitologia , Malária/patologia , Malária/parasitologia , Esporozoítos/fisiologia , Animais , Anopheles/parasitologia , Morte Celular , Células Endoteliais/parasitologia , Células Endoteliais/patologia , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células de Kupffer/parasitologia , Células de Kupffer/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/citologia , Plasmodium berghei/fisiologia , Esporozoítos/citologia
18.
Cell Host Microbe ; 10(6): 591-602, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22177563

RESUMO

During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite. Further, in the Toxoplasma gondii tachyzoite, AMA1 is dispensable for normal RON4 ring and functional TJ assembly but enhances tachyzoite apposition to the cell and internalization frequency. We propose that while the RON proteins act at the TJ, AMA1 mainly functions on the zoite surface to permit correct attachment to the cell, which may facilitate invasion depending on the zoite-cell combination.


Assuntos
Antígenos de Protozoários/metabolismo , Malária/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Animais , Anopheles , Antígenos de Protozoários/genética , Linhagem Celular , Eritrócitos/parasitologia , Hepatócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Esporozoítos/metabolismo , Toxoplasma/genética
19.
Nat Protoc ; 6(9): 1412-28, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21886105

RESUMO

We describe here a highly efficient procedure for conditional mutagenesis in Plasmodium. The procedure uses the site-specific recombination FLP-FRT system of yeast and targets the pre-erythrocytic stages of the rodent Plasmodium parasite P. berghei, including the sporozoite stage and the subsequent liver stage. The technique consists of replacing the gene under study by an FRTed copy (i.e., flanked by FRT sites) in the erythrocytic stages of a parasite clone that expresses the flip (FLP) recombinase stage-specifically--called the 'deleter' clone. We present the available deleter clones, which express FLP at different times of the parasite life cycle, as well as the schemes and tools for constructing new deleter parasites. We also outline and discuss the various strategies for exchanging a wild-type gene with an FRTed copy and for generating conditional gene knockout or knockdown parasite clones. Finally, we detail the protocol for obtaining sporozoites that lack a protein of interest and for monitoring sporozoite-specific DNA excision and depletion of the target protein. The protocol should allow the functional analysis of any essential protein in the sporozoite, liver stage or hepatic merozoite stages of rodent Plasmodium parasites.


Assuntos
Engenharia Genética/métodos , Mutagênese Sítio-Dirigida/métodos , Plasmodium berghei/genética , Animais , Anopheles/parasitologia , Técnicas de Inativação de Genes , Camundongos , Ratos , Ratos Wistar , Recombinação Genética , Esporozoítos/fisiologia
20.
Proc Natl Acad Sci U S A ; 107(43): 18640-5, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20921402

RESUMO

The first step of Plasmodium development in vertebrates is the transformation of the sporozoite, the parasite stage injected by the mosquito in the skin, into merozoites, the stage that invades erythrocytes and initiates the disease. The current view is that, in mammals, this stage conversion occurs only inside hepatocytes. Here, we document the transformation of sporozoites of rodent-infecting Plasmodium into merozoites in the skin of mice. After mosquito bite, ∼50% of the parasites remain in the skin, and at 24 h ∼10% are developing in the epidermis and the dermis, as well as in the immunoprivileged hair follicles where they can survive for weeks. The parasite developmental pathway in skin cells, although frequently abortive, leads to the generation of merozoites that are infective to erythrocytes and are released via merosomes, as typically observed in the liver. Therefore, during malaria in rodents, the skin is not just the route to the liver but is also the final destination for many inoculated parasites, where they can differentiate into merozoites and possibly persist.


Assuntos
Plasmodium berghei/crescimento & desenvolvimento , Plasmodium yoelii/crescimento & desenvolvimento , Pele/parasitologia , Animais , Anopheles/parasitologia , Derme/parasitologia , Epiderme/parasitologia , Proteínas de Fluorescência Verde/genética , Folículo Piloso/parasitologia , Interações Hospedeiro-Parasita , Malária/parasitologia , Malária/transmissão , Merozoítos/crescimento & desenvolvimento , Camundongos , Camundongos Pelados , Camundongos Endogâmicos C57BL , Plasmodium berghei/genética , Plasmodium berghei/patogenicidade , Plasmodium yoelii/genética , Plasmodium yoelii/patogenicidade , Esporozoítos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...