Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 121, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720368

RESUMO

BACKGROUND: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury. METHODS: Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively. RESULTS: In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls. CONCLUSIONS: UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.


Assuntos
Volume de Ventilação Pulmonar , Animais , Ovinos , Feminino , Humanos , Volume de Ventilação Pulmonar/fisiologia , Sangue Fetal/citologia , Gravidez , Citocinas/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Respiração Artificial/métodos , Respiração Artificial/efeitos adversos , Animais Recém-Nascidos
2.
J Appl Physiol (1985) ; 136(3): 630-642, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38328823

RESUMO

Airway liquid is cleared into lung tissue after birth, which becomes edematous and forces the chest wall to expand to accommodate both the cleared liquid and incoming air. This study investigated how changing chest wall mechanics affects respiratory function after birth in near-term lambs with different airway liquid volumes. Surgically instrumented near-term lambs (139 ± 2 days) were randomized into Control (n = 7) or Elevated Liquid (EL; n = 6) groups. Control lambs had lung liquid drained to simulate expected volumes following vaginal delivery. EL lambs had airway liquid drained and 30 mL/kg liquid returned to simulate expected airway liquid volumes after elective cesarean section. Lambs were delivered, transferred to a Perspex box, and ventilated (30 min). Pressure in the box was adjusted to apply positive (7-8 cmH2O above atmospheric pressure) or negative (7-8 cmH2O below atmospheric pressure) pressures for 30 min before pressures were reversed. External negative pressures expanded the chest wall, reduced chest wall compliance (CCW) and increased lung compliance (CL) in Control and EL lambs. External positive pressures compressed the chest wall, increased CCW and reduced CL in Control and EL lambs. External negative pressure improved pulmonary oxygen exchange, reducing the alveolar-arterial difference in oxygen (AaDO2) by 69 mmHg (95% CI [13, 125]; P = 0.016) in Control lambs and by 300 mmHg (95% CI [233, 367]; P < 0.001) in EL lambs. In contrast, external positive pressures impaired pulmonary gas exchange, increasing the AaDO2 by 179 mmHg (95% CI [73, 285]; P = 0.002) in Control and by 215 mmHg (95% CI [89, 343]; P < 0.001) in EL lambs. The application of external thoracic pressures influences respiratory function after birth.NEW & NOTEWORTHY This study investigated how changes in chest wall mechanics influence respiratory function after birth. Our data indicate that the application of continuous external subatmospheric pressure greatly improves respiratory function in near-term lambs with respiratory distress, whereas external positive pressures impair respiratory function. Our findings indicate that, during neonatal resuscitation at birth, the forces applied to the chest wall should not be ignored as they can have a major impact on neonatal respiratory function.


Assuntos
Parede Torácica , Animais , Ovinos , Gravidez , Feminino , Cesárea , Ressuscitação , Respiração , Oxigênio , Animais Recém-Nascidos , Mecânica Respiratória
3.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L330-L343, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252635

RESUMO

Extremely preterm infants are often exposed to long durations of mechanical ventilation to facilitate gas exchange, resulting in ventilation-induced lung injury (VILI). New lung protective strategies utilizing noninvasive ventilation or low tidal volumes are now common but have not reduced rates of bronchopulmonary dysplasia. We aimed to determine the effect of 24 h of low tidal volume ventilation on the immature lung by ventilating preterm fetal sheep in utero. Preterm fetal sheep at 110 ± 1(SD) days' gestation underwent sterile surgery for instrumentation with a tracheal loop to enable in utero mechanical ventilation (IUV). At 112 ± 1 days' gestation, fetuses received either in utero mechanical ventilation (IUV, n = 10) targeting 3-5 mL/kg for 24 h, or no ventilation (CONT, n = 9). At necropsy, fetal lungs were collected to assess molecular and histological markers of lung inflammation and injury. IUV significantly increased lung mRNA expression of interleukin (IL)-1ß, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF) compared with CONT, and increased surfactant protein (SP)-A1, SP-B, and SP-C mRNA expression compared with CONT. IUV produced modest structural changes to the airways, including reduced parenchymal collagen and myofibroblast density. IUV increased pulmonary arteriole thickness compared with CONT but did not alter overall elastin or collagen content within the vasculature. In utero ventilation of an extremely preterm lung, even at low tidal volumes, induces lung inflammation and injury to the airways and vasculature. In utero ventilation may be an important model to isolate the confounding mechanisms of VILI to develop effective therapies for preterm infants requiring prolonged respiratory support.NEW & NOTEWORTHY Preterm infants often require prolonged respiratory support, but the relative contribution of ventilation to the development of lung injury is difficult to isolate. In utero mechanical ventilation allows for mechanistic investigations into ventilation-induced lung injury without confounding factors associated with sustaining extremely preterm lambs ex utero. Twenty-four hours of in utero ventilation, even at low tidal volumes, increased lung inflammation and surfactant protein expression and produced structural changes to the lung parenchyma and vasculature.


Assuntos
Pneumonia , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Recém-Nascido , Ovinos , Animais , Lactente Extremamente Prematuro , Pulmão/metabolismo , Feto/metabolismo , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Colágeno/metabolismo , Pneumonia/patologia , Tensoativos/metabolismo , RNA Mensageiro/metabolismo
4.
Reprod Fertil Dev ; 18(6): 655-65, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16930512

RESUMO

Increased fetal lung expansion induces lung growth, cell differentiation and extracellular matrix remodelling, although the mechanisms involved are unknown. Platelet-derived growth factor (PDGF)-B, vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF)-II are mitogens activating the mitogen-activated protein kinase (MAPK) pathway, whereas transforming growth factor (TGF)-beta1 induces differentiation and extracellular matrix remodelling. In the present study, we investigated the mRNA levels of PDGF-B, VEGF, IGF-II and TGF-beta1, as well as active MAPK levels, during increased fetal lung expansion induced by tracheal obstruction (TO) in sheep for 0 (controls), 36 h or 2, 4, or 10 days (n = 5 in each group). The 3.7-kb VEGF transcript increased by 30% (P < 0.05) at 36 h TO. The expression of PDGF-B decreased by approximately 25% (P < 0.01) at 2-10 days TO. In contrast, TGF-beta1 mRNA increased by 96% (P < 0.05) at 10 days TO, when bioactive TGF-beta1 decreased by 55% (P < 0.05). Insulin-like growth factor-II mRNA tended to increase at 10 days TO (37% above controls; P = 0.07), whereas mRNA for its receptor, IGF1R, was reduced by TO. There was no change in active MAPK levels preceding or at the time of a TO-induced 800% increase in cell proliferation. We conclude that VEGF is likely to promote expansion-induced endothelial cell proliferation, but the mechanisms underlying expansion-induced proliferation of fibroblasts and alveolar epithelial cells are unlikely to be mediated by increases in PDGF-B or IGF-II expression or activation of the MAPK pathway.


Assuntos
Maturidade dos Órgãos Fetais/fisiologia , Substâncias de Crescimento/fisiologia , Pulmão/embriologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Ovinos/embriologia , Animais , Ativação Enzimática , Feminino , Hibridização In Situ , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/fisiologia , Fosforilação , Gravidez , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/fisiologia , RNA Mensageiro/análise , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/fisiologia , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...