Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Neural Syst ; 34(10): 2450052, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38989919

RESUMO

Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise, contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning based on convolutional neural networks (CNNs) is a promising approach to address these challenges by performing automated inspection of MR images. In this study, a CNN for the detection of random head motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach aimed to first identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of a more detailed three-class classification. The utilized dataset consisted of 420 T1-weighted whole-brain image volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact prominence. Results demonstrate an accuracy of 95% for the identification of images with pronounced artifact load. The addition of an intermediate class retained an accuracy of 76%. The findings highlight the potential of CNN-based approaches to increase the efficiency of post-hoc QAs in large datasets by flagging images with potentially relevant artifact loads for closer inspection.


Assuntos
Artefatos , Encéfalo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Adulto , Masculino , Feminino , Aprendizado Profundo , Movimento (Física) , Movimentos da Cabeça
2.
J Cardiovasc Dev Dis ; 10(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37367404

RESUMO

Computed tomography perfusion (CTP) is frequently used in the triage of ischemic stroke patients for endovascular thrombectomy (EVT). We aimed to quantify the volumetric and spatial agreement of the CTP ischemic core estimated with different thresholds and follow-up MRI infarct volume on diffusion-weighted imaging (DWI). Patients treated with EVT between November 2017 and September 2020 with available baseline CTP and follow-up DWI were included. Data were processed with Philips IntelliSpace Portal using four different thresholds. Follow-up infarct volume was segmented on DWI. In 55 patients, the median DWI volume was 10 mL, and median estimated CTP ischemic core volumes ranged from 10-42 mL. In patients with complete reperfusion, the intraclass correlation coefficient (ICC) showed moderate-good volumetric agreement (range 0.55-0.76). A poor agreement was found for all methods in patients with successful reperfusion (ICC range 0.36-0.45). Spatial agreement (median Dice) was low for all four methods (range 0.17-0.19). Severe core overestimation was most frequently (27%) seen in Method 3 and patients with carotid-T occlusion. Our study shows moderate-good volumetric agreement between ischemic core estimates for four different thresholds and subsequent infarct volume on DWI in EVT-treated patients with complete reperfusion. The spatial agreement was similar to other commercially available software packages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA