Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-37372741

RESUMO

Pharmaceutically active compounds (PhACs) enter soil with organic waste materials such as manure. Such complex substrates differently affect PhACs' soil sorption. For the first time, batch experiments were conducted using five selected chemicals as model constituents to elucidate the effects. Urea, phosphate (KH2PO4), acetic acid, phenol and nonadecanoic acid (C:19) altered the sorption strength and/or nonlinearity of sulfadiazine, caffeine, and atenolol in an arable Cambisol topsoil. The nonlinear Freundlich model best described sorption. Overall, the PhACs' Freundlich coefficients (sorption strength) increased in the sequence urea < phosphate < phenol < C:19 < acetic acid, while the Freundlich exponents largely decreased, indicating increasing sorption specificity. The effects on sulfadiazine and caffeine were rather similar, but in many cases different from atenolol. Phosphate mobilized sulfadiazine and caffeine and urea mobilized sulfadiazine, which was explained by sorption competition resulting from specific preference of similar sorption sites. Soil sorbed phenol strongly increased the sorption of all three PhACs; phenolic functional groups are preferred sorption sites of PhACs in soil. The large increase in sorption of all PhACs by acetic acid was attributed to a loosening of the soil organic matter and thus the creation of additional sorption sites. The effect of C:19 fatty acid, however, was inconsistent. These results help to better understand the sorption of PhACs in soil-manure mixtures.


Assuntos
Poluentes do Solo , Solo , Solo/química , Esterco , Atenolol , Cafeína , Adsorção , Sulfadiazina , Fenóis , Poluentes do Solo/análise , Preparações Farmacêuticas
3.
Sci Rep ; 13(1): 2818, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797309

RESUMO

Redox-driven biogeochemical cycling of iron plays an integral role in the complex process network of ecosystems, such as carbon cycling, the fate of nutrients and greenhouse gas emissions. We investigate Fe-(hydr)oxide (trans)formation pathways from rhyolitic tephra in acidic topsoils of South Patagonian Andosols to evaluate the ecological relevance of terrestrial iron cycling for this sensitive fjord ecosystem. Using bulk geochemical analyses combined with micrometer-scale-measurements on individual soil aggregates and tephra pumice, we document biotic and abiotic pathways of Fe released from the glassy tephra matrix and titanomagnetite phenocrysts. During successive redox cycles that are controlled by frequent hydrological perturbations under hyper-humid climate, (trans)formations of ferrihydrite-organic matter coprecipitates, maghemite and hematite are closely linked to tephra weathering and organic matter turnover. These Fe-(hydr)oxides nucleate after glass dissolution and complexation with organic ligands, through maghemitization or dissolution-(re)crystallization processes from metastable precursors. Ultimately, hematite represents the most thermodynamically stable Fe-(hydr)oxide formed under these conditions and physically accumulates at redox interfaces, whereas the ferrihydrite coprecipitates represent a so far underappreciated terrestrial source of bio-available iron for fjord bioproductivity. The insights into Fe-(hydr)oxide (trans)formation in Andosols have implications for a better understanding of biogeochemical cycling of iron in this unique Patagonian fjord ecosystem.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36767832

RESUMO

To identify the sources of contamination with potentially toxic elements (PTEs) in roadside orchard soils and to evaluate the potential ecological and environmental impacts in Gaziantep, soil samples from 20 mixed pistachio and olive orchards on roadsides with different traffic densities and at different distances to the roads were analyzed. Concentrations were 23,407.36 ± 4183.76 mg·kg-1 for Fe, 421.78 ± 100.26 mg·kg-1 for Mn, 100.20 ± 41.92 mg·kg-1 for Ni, 73.30 ± 25.58 mg·kg-1 for Cr, 65.03 ± 12.19 mg·kg-1 for Zn, 60.38± 7.91 mg·kg-1 for Pb, 17.74 ± 3.35 mg·kg-1 for Cu, 14.93 ± 4.94 mg·kg-1 for Co, and 0.30 ± 0.12 mg·kg-1 for Cd. It was found that the Ni content in 51% and the Cr content in 18% of orchard soils were above the legal limits for agricultural soils (pH > 6) in Türkiye. Factor analysis (FA) showed that Co, Cr, Cu, Fe, Mn, Ni, and Pb loaded on the first factor (FC1), while Cd and Zn loaded mostly on the second factor (FC2). It was found that Cr, Ni, and Pb were primarily enriched through pedogenic processes, whereas Cd most likely originated from agricultural activities, while the impact of road traffic as source of PTE contamination was insignificant. It has been revealed that the soils are of low quality for agricultural production due to PTE contamination (PIave ≥ 1). The SOPI values from environmental and ecological individual indices showed that the soil pollution level was moderate for Cd, Ni, and Pb, and low for Cr. The soil pollution index (SOPI) proved to be suitable for evaluating and comparing PTE pollution in regions with different soil properties.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Metais Pesados/análise , Monitoramento Ambiental , Cádmio/análise , Chumbo/análise , Poluentes do Solo/análise , Medição de Risco , China
5.
Chemosphere ; 312(Pt 1): 137210, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36368544

RESUMO

Manure is widely used as a fertilizer and applied to agricultural land. It may contain highly active chemicals like veterinary medicinal products or biocides, which enter into the environment by this pathway. This is recognized by several regulatory frameworks, however, a detailed method for examining the transformation of chemicals in manure was lacking. This article describes the validation of a method for studying the anaerobic transformation of chemicals in pig and cattle liquid manure. Different steps are covered with an emphasis on the validation ring test and the OECD (Organisation for Economic Cooperation and Development) process that led to the recent adoption of the method as OECD Test Guideline (TG) 320.


Assuntos
Esterco , Organização para a Cooperação e Desenvolvimento Econômico , Animais , Bovinos , Suínos , Anaerobiose , Fertilizantes , Agricultura
6.
Chemosphere ; 303(Pt 2): 135163, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35654230

RESUMO

Urea is the most commonly used nitrogen fertilizer worldwide. However, depending on soil and environmental conditions, high nitrogen losses can occur due to gaseous ammonia emissions. Urease inhibitors like N-(n-butyl)thiophosphoric triamide (NBPT) reduce these losses by blocking the urease enzyme, which catalyzes urea hydrolysis. With the increasing use of NBPT its environmental fate and features of urease inhibition become increasingly important. This study aimed to further elucidate major NBPT degradation pathways and related urease inhibition in soil. This was investigated in a 14-d incubation experiment using practice-relevant application rates of NBPT and four of its metabolites N-(n-butyl)phosphoric triamide (NBPTO), diamido phosphoric acid (DAP), diamido thiophosphoric acid (DATP) and rac-N-(n-butyl)thiophosphoric diamide (NBPD), covering three postulated degradation pathways. Additionally, the urease inhibition by these compounds was determined and further investigated in 2-h tests. The latter provided dose-response curves, showing that all substances inhibited urease, with NBPTO being the most effective. Inhibition of urease in NBPT-spiked soil was also largely, but not completely, attributed to NBPTO formed within the test period. In 14-d incubation tests, all investigated compounds dissipated quickly by >90% within 6 d (NBPTO), 3 d (NBPT) and ≤1 d (DAP, DATP and NBPD). Extensive oxidation of NBPT to NBPTO and subsequent minor formation of DAP was identified as the preferred degradation pathway. Abiotic degradation processes in sterile soil corresponded to 65-90% of total degradation in microbial active soil. Furthermore, pseudo-first order dissipation kinetics were retarded in sterile soil. Urease activity, calculated as a percentage of activity in the urea-fertilized control, was lowest after about 2 d when NBPTO was spiked to soil (17.9%), followed by NBPT (35.7%), DATP (51.3%), NBPD (54.0%), and DAP (54.4%). This shows that urease inhibition depends on the interplay of NBPT and its degradation products.


Assuntos
Solo , Urease , Fertilizantes/análise , Nitrogênio/metabolismo , Compostos Organofosforados/farmacologia , Ureia/metabolismo , Ureia/farmacologia
7.
Sensors (Basel) ; 22(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35408363

RESUMO

Soil spectroscopy in the visible-to-near infrared (VNIR) and mid-infrared (MIR) is a cost-effective method to determine the soil organic carbon content (SOC) based on predictive spectral models calibrated to analytical-determined SOC reference data. The degree to which uncertainty in reference data and spectral measurements contributes to the estimated accuracy of VNIR and MIR predictions, however, is rarely addressed and remains unclear, in particular for current handheld MIR spectrometers. We thus evaluated the reproducibility of both the spectral reflectance measurements with portable VNIR and MIR spectrometers and the analytical dry combustion SOC reference method, with the aim to assess how varying spectral inputs and reference values impact the calibration and validation of predictive VNIR and MIR models. Soil reflectance spectra and SOC were measured in triplicate, the latter by different laboratories, for a set of 75 finely ground soil samples covering a wide range of parent materials and SOC contents. Predictive partial least-squares regression (PLSR) models were evaluated in a repeated, nested cross-validation approach with systematically varied spectral inputs and reference data, respectively. We found that SOC predictions from both VNIR and MIR spectra were equally highly reproducible on average and similar to the dry combustion method, but MIR spectra were more robust to calibration sample variation. The contributions of spectral variation (ΔRMSE < 0.4 g·kg−1) and reference SOC uncertainty (ΔRMSE < 0.3 g·kg−1) to spectral modeling errors were small compared to the difference between the VNIR and MIR spectral ranges (ΔRMSE ~1.4 g·kg−1 in favor of MIR). For reference SOC, uncertainty was limited to the case of biased reference data appearing in either the calibration or validation. Given better predictive accuracy, comparable spectral reproducibility and greater robustness against calibration sample selection, the portable MIR spectrometer was considered overall superior to the VNIR instrument for SOC analysis. Our results further indicate that random errors in SOC reference values are effectively compensated for during model calibration, while biased SOC calibration data propagates errors into model predictions. Reference data uncertainty is thus more likely to negatively impact the estimated validation accuracy in soil spectroscopy studies where archived data, e.g., from soil spectral libraries, are used for model building, but it should be negligible otherwise.


Assuntos
Carbono , Solo , Calibragem , Carbono/química , Análise dos Mínimos Quadrados , Reprodutibilidade dos Testes , Solo/química
8.
Sci Total Environ ; 817: 152977, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016939

RESUMO

Rock weathering and pedogenesis are fundamental processes for element mobility in terrestrial bio-geochemical cycles and for the regulation of primary productivity in adjacent coastal marine ecosystems. Here, soils developed from volcanic ash under extreme climate conditions could play a particular role. We therefore investigated rock weathering, soil formation and the associated mobilization of trace elements and micronutrients in a pristine South Patagonian ecosystem. Weathered and unweathered basement lithologies, tephra of the 4.216 kyrs BP Mt. Burney eruption and four soil profiles are considered. The approach combines mineralogical (XRD, SEM) and inorganic geochemical (XRF, ICP-OES/MS) with organic geochemical analyses (TOC, TN, δ13C, δ15N, DOC extracts) of representative samples. Chemical weathering is quantified by mass balance calculations and 14C age constraints allow a correlation of pedogenic processes with the paleoenvironmental history of the area. Our data document that pedogenesis with initial peat formation occurred since ~2.5 kyrs BP. In these acidic peaty Andosols, intensive alteration of volcanic glass mobilized large quantities of elements, considerably surpassing leachates provided by basement rock weathering. Clay production is limited in favor of the formation of amorphous Al- and crystalline Fe-(hydr)oxides. However, tephra alteration, soil organic matter turnover rates, enhanced dissolved organic carbon export, and Fe-/Al-(hydr)oxide precipitation are closely linked and ultimately controlled by rainfall-induced water-level fluctuations, highlighting the dominant influence of the southern westerly wind belt. The transport of mobilized trace elements and micronutrients adsorbed onto suspended colloids (dissolved organic carbon, Al-humus complexes and Fe-(hydr)oxides) is redox-pH-dependent, highly variable and ultimately regulated by westerly intensity. Broader implications of this work include a new perspective on the climate-controlled micronutrient delivery for primary productivity in South Patagonian fjords, which is strongly affected by Andosol formation. Furthermore, a careful evaluation of 'ordinary' geochemical proxies in regional paleoenvironmental archives is needed to account for these unique pedogenic processes.


Assuntos
Ecossistema , Solo , Clima , Solo/química , Erupções Vulcânicas , Tempo (Meteorologia)
9.
Environ Pollut ; 292(Pt A): 118256, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606970

RESUMO

Batch sorption of metformin hydrochloride (MET) onto a specially designed biochar mix consisting of both macro (MAC) and micro (MIC) algae, rice husk and pine sawdust was conducted. Pyrolysis of both MAC and MIC algae mixture was done followed by chemical activation with hydrogen-peroxide. Additionally, sorption of MET under the influence of pH was separately investigated. Batch studies of isotherms were well described by Freundlich model with high non-linearity and Freundlich exponent values ranged anywhere from 0.12 to 1.54. Heterogeneity of MET adsorption to the bonding sites was attributed to the surface functional groups of the modified biochar. Amongst the four biochars, the activated macroalgae biochar (MACAC) and microalgae biochar (MICAC) depicted favourable adsorption of MET with maximum adsorption at pH 7. Up to 76% of MET removal from the environment was obatained using the MACAC biochar. Scanning electron micrographs coupled with energy dispersive X-ray, as well as elemental analyses confirmed formation of oxygen containing surface functional groups due to activation strengthening chemisorption as the main sorption mechanism. Further, Fourier transform infra-red spectroscopy and other surface functional group analyses along with Zeta potential measurements reinforced our proposed sorption mechanism. Lowest zeta potential observed at pH 7 enhanced the electrostatic force of attraction for both the biochars. Negative zeta potential value of the biochars under different pH indicated potential of the biochars to adsorb other positively charged contaminants. From a techno-economic perspective, capital expenditure cost is not readily available, however, it is envisaged that production of pyrolyzed biochar from algal biomass could make the process economically attractive especially when the biochar could be utilised for high-end applications.


Assuntos
Metformina , Oryza , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Estudos de Viabilidade , Lignina , Poluentes Químicos da Água/análise
10.
Philos Trans R Soc Lond B Biol Sci ; 376(1834): 20200185, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34365826

RESUMO

This special issue provides an assessment of the contribution of soils to Nature's Contributions to People (NCP). Here, we combine this assessment and previously published relationships between NCP and delivery on the UN Sustainable Development Goals (SDGs) to infer contributions of soils to the SDGs. We show that in addition to contributing positively to the delivery of all NCP, soils also have a role in underpinning all SDGs. While highlighting the great potential of soils to contribute to sustainable development, it is recognized that poorly managed, degraded or polluted soils may contribute negatively to both NCP and SDGs. The positive contribution, however, cannot be taken for granted, and soils must be managed carefully to keep them healthy and capable of playing this vital role. A priority for soil management must include: (i) for healthy soils in natural ecosystems, protect them from conversion and degradation; (ii) for managed soils, manage in a way to protect and enhance soil biodiversity, health and sustainability and to prevent degradation; and (iii) for degraded soils, restore to full soil health. We have enough knowledge now to move forward with the implementation of best management practices to maintain and improve soil health. This analysis shows that this is not just desirable, it is essential if we are to meet the SDG targets by 2030 and achieve sustainable development more broadly in the decades to come. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.


Assuntos
Conservação dos Recursos Naturais , Solo , Desenvolvimento Sustentável , Nações Unidas , Humanos
11.
Philos Trans R Soc Lond B Biol Sci ; 376(1834): 20200183, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34365823

RESUMO

Intact, 'healthy' soils provide indispensable ecosystem services that largely depend on the biotic activity. Soil health is connected with human health, yet, knowledge of the underlying soil functioning remains incomplete. This review highlights selected services, i.e. (i) soil as a genetic resource and hotspot of biodiversity, forming the basis for providing (ii) biochemical resources and (iii) medicinal services and goods. Soils harbour an unrivalled biodiversity of organisms, especially microorganisms. Some of the abilities of autochthonous microorganisms and their relevant enzymes serve (i) to improve natural soil functions and in particular plant growth, e.g. through beneficial plant growth-promoting, symbiotic and mycorrhizal microorganisms, (ii) to act as biopesticides, (iii) to facilitate biodegradation of pollutants for soil bioremediation and (iv) to yield enzymes or chemicals for industrial use. Soils also exert direct effects on human health. Contact with soil enriches the human microbiome, affords protection against allergies and promotes emotional well-being. Medicinally relevant are soil substrates such as loams, clays and various minerals with curative effects as well as pharmaceutically active organic chemicals like antibiotics that are formed by soil microorganisms. By contrast, irritating minerals, soil dust inhalation and misguided soil ingestion may adversely affect humans. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People.


Assuntos
Biodiversidade , Ecossistema , Microbiota , Microbiologia do Solo , Solo/química , Conservação dos Recursos Naturais , Humanos , Micorrizas
12.
Environ Geochem Health ; 43(10): 4299-4313, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33860411

RESUMO

Pharmaceutically active compounds (PhACs) released into the environment have an adverse impact on the soil and water ecosystem as well as human health. Sorption of PhACs by soils and its potential modification through introduced DOM in the applied animal manure or treated wastewater (TWW) determines the mobility and environmental relevance of PhACs. Sulfadiazine, caffeine and atenolol were selected as target PhACs to investigate their sorption behaviors by five selected arable soils in the absence and presence of pig manure DOM. Sulfadiazine was least sorbed, followed by caffeine and atenolol according to the Freundlich sorption isotherm fit (soil average Kf [µg(1-n) mLn g-1] 4.07, 9.06, 18.92, respectively). The addition of manure DOM (31.34 mg C L-1) decreased the sorption of sulfadiazine and especially of caffeine and atenolol (average Kf 3.04, 6.17, 5.79, respectively). Freundlich sorption isotherms of the PhACs became more nonlinear in the presence of manure DOM (Freundlich exponent n changed from 0.74-1.40 to 0.62-1.12), implying more heterogeneous sorption of PhACs in soil-DOM binary systems. Sorption competition of DOM molecules with sulfadiazine and caffeine mostly contributed to their decreased soil sorption when DOM was present. In contrast, the formation of DOM-atenolol associates in the solution phase caused the largely decreased soil sorption of atenolol in the presence of DOM. It is suggested that DOM concentration (e.g., ≥ 60 mg C L-1) and its interaction with PhACs should be taken into consideration when assessing the environmental impact of land application of animal manure or irrigation with TWW.


Assuntos
Preparações Farmacêuticas , Poluentes do Solo , Adsorção , Animais , Atenolol , Cafeína , Ecossistema , Esterco , Solo , Poluentes do Solo/análise , Sulfadiazina , Suínos
13.
Bioresour Technol ; 315: 123782, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32652440

RESUMO

Manure from medicated livestock contains pharmaceutical antibiotics and antibiotic resistance genes (ARGs). Bioavailable antibiotics trigger further ARGs amplification during manure storage. It was tested whether biochar lowers the bioavailability of the antibiotics sulfamethazine (SMZ), ciprofloxacin (CIP), oxytetracycline (OTC) and florfenicol (FF) in manure and the amplification of sul1 and tet(W) ARGs. To that end, liquid pig manure was treated with 5% (w/w) pinecone biochar (BCP). Antibiotics dissipated during 30-d incubation in the order SMZ < OTC < CIP < FF. Added BCP further immobilized SMZ, OTC and CIP, while the effect was not significant for FF. Both sul1 and tet(W) ARGs copy numbers significantly increased by factors of 5.8 and 2.5, respectively, in OTC and SMZ spiked manure. The abundance of sul1 was significantly decreased in BCP amended manure, while the impact on tet(W) was less. Consequently, biochar is suitable for the management of antibiotics contaminated manure during storage.


Assuntos
Antibacterianos/farmacologia , Esterco , Animais , Carvão Vegetal , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Genes Bacterianos , Solo , Microbiologia do Solo , Suínos
14.
Ecotoxicol Environ Saf ; 178: 146-158, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31002969

RESUMO

Animal manure or bio-solids used as fertilizers are the main routes of antibiotic exposure in the agricultural land, which can have immense detrimental effects on plants. Sulfadiazine (SDZ), belonging to the class of sulfonamides, is one of the most detected antibiotics in the agricultural soil. In this study, the effect of SDZ on the growth, changes in antioxidant metabolite content and enzyme activities related to oxidative stress were analysed. Moreover, the proteome alterations in Arabidopsis thaliana roots in response to SDZ was examined by means of a combined iTRAQ-LC-MS/MS quantitative proteomics approach. A dose-dependent decrease in leaf biomass and root length was evidenced in response to SDZ. Increased malondialdehyde content at higher concentration (2 µM) of SDZ indicated increased lipid peroxidation and suggest the induction of oxidative stress. Glutathione levels were significantly higher compared to control, whereas there was no increase in ascorbate content or the enzyme activities of glutathione metabolism, even at higher concentrations. In total, 48 differentially abundant proteins related to stress/stimuli response followed by transcription and translation, metabolism, transport and other functions were identified. Several proteins related to oxidative, dehydration, salinity and heavy metal stresses were represented. Upregulation of peroxidases was validated with total peroxidase activity. Pathway analysis provided an indication of increased phenylpropanoid biosynthesis. Probable molecular mechanisms altered in response to SDZ are highlighted.


Assuntos
Antibacterianos/toxicidade , Arabidopsis/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteoma/metabolismo , Poluentes do Solo/toxicidade , Sulfadiazina/toxicidade , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fertilizantes/análise , Esterco/análise , Proteômica/métodos , Solo/química
15.
Environ Res ; 168: 14-24, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253312

RESUMO

State of art metagenomics were used to investigate the microbial population, antibiotic resistance genes and plasmids of medical interest in wastewater used for urban agriculture in Ouagadougou (Burkina Faso). Wastewater samples were collected from three canals near agricultural fields in three neighbourhoods. Assessment of microbial population diversity revealed different microbial patterns among the different samples. Sequencing reads from the wastewaters revealed different functional specializations of microbial communities, with the predominance of carbohydrates and proteins metabolism functions. Eleven pathogen-specific and 56 orthologous virulence factor genes were detected in the wastewater samples. These virulence factors are usually found in human pathogens that cause gastroenteritis and/or diarrhoea. A wide range of antibiotic resistance genes was identified; 81 are transmissible by mobile genetic elements. These included seven different extended spectrum ß-lactamase genes encoding synthesis of four enzyme families, including two metallo-ß-lactamases (blaAIM-1 and blaGES-21). Ten different incompatibility groups of Enterobacteriaceae plasmid replicons (ColE, FIB, FIC, FII, P, Q, R, U, Y, and A/C), and 30 plasmid replicon types from Gram-positive bacteria. All are implicated in the wide distribution of antibiotic resistance genes. We conclude that wastewater used for urban agriculture in the city represents a high risk for spreading bacteria and antimicrobial resistance among humans and animals.


Assuntos
Irrigação Agrícola , Farmacorresistência Bacteriana , Fatores de Virulência , Águas Residuárias , Agricultura , Animais , Antibacterianos , Burkina Faso , Farmacorresistência Bacteriana/genética , Humanos , Fatores de Virulência/genética , Águas Residuárias/microbiologia , beta-Lactamases
16.
J Biotechnol ; 257: 22-34, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28755910

RESUMO

We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.


Assuntos
Meio Ambiente , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Microbiologia do Solo , Vicia/genética , Vicia/microbiologia , Agrobacterium , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Ecologia , Ácidos Graxos/análise , Fungos/classificação , Fungos/genética , Regulação da Expressão Gênica de Plantas , Micorrizas/classificação , Peptídeo Sintases/genética , Fosfolipídeos/análise , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobium/classificação , Rizosfera , Medição de Risco , Sensibilidade e Especificidade , Solo/química , Esporos Fúngicos , Simbiose , Vicia/metabolismo
17.
J Biotechnol ; 243: 48-60, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28011129

RESUMO

We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.


Assuntos
Meio Ambiente , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Microbiologia do Solo , Vicia/genética , Vicia/microbiologia , Agrobacterium , Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Regulação da Expressão Gênica de Plantas , Modelos Genéticos , Micorrizas/classificação , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobium/classificação , Esporos Fúngicos , Simbiose , Vicia/metabolismo
18.
J Contam Hydrol ; 192: 118-128, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27450276

RESUMO

Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides.


Assuntos
Antibacterianos/análise , Esterco , Modelos Teóricos , Poluentes do Solo/análise , Sulfonamidas/análise , Animais , Antibacterianos/química , Carbono/análise , Coloides/química , Feminino , Água Subterrânea/química , Interações Hidrofóbicas e Hidrofílicas , Luxemburgo , Nitrogênio/análise , Solo/química , Poluentes do Solo/química , Sulfonamidas/química , Suínos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
19.
Sci Total Environ ; 559: 347-355, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27088516

RESUMO

Sorption experiments of sulfanilamide (SAA) on well-characterized samples of soil size-fractions were combined with the modeling of SAA-soil-interaction via quantum chemical calculations. Freundlich unit capacities were determined in batch experiments and it was found that they increase with the soil organic matter (SOM) content according to the order fine silt > medium silt > clay > whole soil > coarse silt > sand. The calculated binding energies for mass-spectrometrically quantified sorption sites followed the order ionic species > peptides > carbohydrates > phenols and lignin monomers > lignin dimers > heterocyclic compounds > fatty acids > sterols > aromatic compounds > lipids, alkanes, and alkenes. SAA forms H-bonds through its polar centers with the polar SOM sorption sites. In contrast dispersion and π-π-interactions predominate the interaction of the SAA aromatic ring with the non-polar moieties of SOM. Moreover, the dipole moment, partial atomic charges, and molecular volume of the SOM sorption sites are the main physical properties controlling the SAA-SOM-interaction. Further, reasonable estimates of the Freundlich unit capacities from the calculated binding energies have been established. Consequently, we suggest using this approach in forthcoming studies to disclose the interactions of a wide range of organic pollutants with SOM.


Assuntos
Modelos Químicos , Poluentes do Solo/química , Sulfanilamidas/química , Adsorção , Cinética , Solo/química , Poluentes do Solo/análise , Sulfanilamida , Sulfanilamidas/análise
20.
Environ Sci Pollut Res Int ; 22(17): 13362-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25940473

RESUMO

Soil contamination by antibiotics is a possible consequence of animal husbandry waste, sewage sludge, and reclaimed water spreading in agriculture. In this study, 1-year-old hazel plants (Corylus avellana L.) were grown in pots for 64 days in soil spiked with sulfadiazine (SDZ) in the range 0.01-100 mg kg(-1) soil. Leaf gas exchanges, fluorescence parameters and plant growth were measured regularly during the experiment, whereas plant biomass, sulfonamide concentrations in soil and plant tissues, and the quantitative variation of culturable bacterial endophytes in leaf petiole were analyzed at the end of the trial. During the experiment, photosynthesis and leaf transpiration as well as fluorescence parameters were progressively reduced by the antibiotic. Effects were more evident for leaf transpiration and for the highest SDZ spiking concentrations, whereas growth analyses did not reveal negative effects of the antibiotic. At the end of the trial, a high number of culturable endophytic bacteria in the leaf petiole of plants treated with 0.1 and 0.01 mg kg(-1) were observed, and SDZ was extractable from soil and plant roots for spiking concentrations ≥1 mg kg(-1). Inside plants, the antibiotic was mainly stored at the root level with bioconcentration factors increasing with the spiking dose, and the hydroxylated derivate 4-OH-SDZ was the only metabolite detected. Overall results show that 1-year-old hazel plants can contribute to the reduction of sulfonamide concentrations in the environment, however, sensitive reactions to SDZ can be expected at the highest contamination levels.


Assuntos
Antibacterianos/metabolismo , Corylus/metabolismo , Poluentes do Solo/metabolismo , Sulfadiazina/metabolismo , Animais , Antibacterianos/farmacologia , Corylus/efeitos dos fármacos , Corylus/crescimento & desenvolvimento , Corylus/microbiologia , Endófitos/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Esgotos/química , Solo/química , Poluentes do Solo/farmacologia , Sulfadiazina/farmacologia , Drogas Veterinárias/metabolismo , Drogas Veterinárias/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...