Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 18(5): e202201208, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644964

RESUMO

All-vanadium redox flow batteries are promising large-scale energy storage solutions to support intermittent power generation. Commercial graphite felts are among the most used materials as electrodes for these batteries due to their cheap price, high conductivity, and large surface area. However, these materials exhibit poor wettability and electrochemical activity towards vanadium redox reactions, which translates into overpotentials and lower efficiencies. Deep eutectic solvents (DES) are mixtures of Lewis acids and bases that exhibit lower melting points than their original components. Here, a DES composed of choline chloride and urea, and a DES composed of FeCl3 and NH4 Cl have been employed to modify the surface of graphite felts alongside a series of re-carbonization steps. The resulting materials were compared against pristine, thermally activated, and oxidatively activated graphite felts. Our results indicated that the treatments introduced new oxygen and nitrogen functionalities to the carbonaceous surface and increased the surface area, the degree of disorder and defects in the graphitic layers of the fibres. Cyclic voltammetry studies demonstrated higher electrochemical activity towards vanadium redox reactions and electrochemical impedance spectroscopy experiments showed the modified materials exhibited significantly lower charge transfer resistances. When tested in full cell configuration the electrode modified with the urea-based DES exhibited comparable coulombic efficiencies and superior energy storage capacity retention than the thermally oxidized felt used as benchmark, suggesting that the introduction of oxygen- and nitrogen-rich functional groups had a positive effect on the overall electrochemical performance of graphite felts.

2.
Polymers (Basel) ; 8(7)2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30974544

RESUMO

Electrospinning was performed with a blend of commercially available poly(methyl methacrylate) (PMMA) and a sulfur-rich copolymer based on poly(sulfur-statistical-diisopropenylbenzene), which was synthesized via inverse vulcanization. The polysulfide backbone of sulfur-containing polymers is known to bind mercury from aqueous solutions and can be utilized for recycling water. Increasing the surface area by electrospinning can maximize the effect of binding mercury regarding the rate and maximum uptake. These fibers showed a mercury decrease of more than 98% after a few seconds and a maximum uptake of 440 mg of mercury per gram of electrospun fibers. These polymeric fibers represent a new class of efficient water filtering systems that show one of the highest and fastest mercury uptakes for electrospun fibers reported.

3.
Macromol Rapid Commun ; 37(1): 100-104, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26583744

RESUMO

A unique fabrication process of low molar mass, crystalline polypeptoid fibers is described. Thermoresponsive fiber mats are prepared by electrospinning a homogeneous blend of semicrystalline poly(N-(n-propyl) glycine) (PPGly; 4.1 kDa) with high molar mass poly(ethylene oxide) (PEO). Annealing of these fibers at ≈100 °C selectively removes the PEO and produces stable crystalline fiber mats of pure PPGly, which are insoluble in aqueous solution but can be redissolved in methanol or ethanol. The formation of water-stable polypeptoid fiber mats is an important step toward their utilization in biomedical applications such as tissue engineering or wound dressing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA