Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 203: 108069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286329

RESUMO

Pathogen spores have been recognized as prey with implications for resource dynamics, energy transfer and disease transmission. In aquatic ecosystems, filter-feeders are able to consume such motile forms of pathogens that can cause severe disease in susceptible hosts. The interactions between European crayfish and the crayfish plague pathogen Aphanomyces astaci are of particular conservation interest. In this study, we aim to evaluate the ecological interactions between Ap. astaci, its host Astacus astacus and individuals of the genus Daphnia, filter-feeding planktonic crustaceans. Our focus was on the consumption of the motile zoospores by Daphnia individuals, but we also considered the potential of Daphnia as non-target hosts. We conducted a series of infection and life-history experiments with Ap. astaci, three Daphnia species (D. magna, D. galeata, and D. pulex) and the noble crayfish As. astacus. We did not observe any lethal effects in the infection experiments involving Ap. astaci and Daphnia. Only D. pulex showed differences in some life-history traits. The feeding experiment using the motile zoospores of Ap. astaci as alternative food source or as supplement to different amounts of algal food revealed their nutritional value: D. magna individuals survived, grew, and reproduced on a zoospore diet alone. When zoospores were supplemented to the regular algal diet, all life-history parameters have been significantly improved. However, this successful consumption of zoospores did not result in a reduced mortality of the susceptible crayfish As. astacus during the infection experiment. Nevertheless, the pathogen load of Ap. astaci in the tissues of As. astacus was significantly reduced as a consequence of the feeding activity of Daphnia. Our results indicate that an abundant filter-feeding community can reduce the amount of infective zoospores in the water body and thus be beneficial to susceptible crayfish hosts, potentially acting as a general buffer against zoospore-transmitted diseases in lentic waters.


Assuntos
Aphanomyces , Astacoidea , Humanos , Animais , Ecossistema , Interações Hospedeiro-Patógeno , Alimentos Marinhos
2.
PLoS One ; 17(4): e0265632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35363773

RESUMO

Mutations are the ultimate source of heritable variation and therefore the fuel for evolution, but direct estimates of mutation rates exist only for few species. We estimated the spontaneous single nucleotide mutation rate among clonal generations in the waterflea Daphnia galeata with a short-term mutation accumulation approach. Individuals from eighteen mutation accumulation lines over five generations were deep sequenced to count de novo mutations that were not present in a pool of F1 individuals, representing the parental genotype. We identified 12 new nucleotide mutations in 90 clonal generational passages. This resulted in an estimated single nucleotide mutation rate of 0.745 x 10-9 (95% c.f. 0.39 x 10-9-1.26 x 10-9), which is slightly lower than recent estimates for other Daphnia species. We discuss the implications for the population genetics of Cladocerans.


Assuntos
Daphnia , Nucleotídeos , Animais , Daphnia/genética , Genética Populacional , Mutação , Taxa de Mutação , Nucleotídeos/genética
3.
Water Res ; 210: 117956, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032894

RESUMO

Groundwater is one of our most important resources, however groundwater ecosystems are among the most understudied habitats of the planet earth. Studies on groundwater organisms are hampered by the difficult accessibility of species, the lack of morphological differentiation and the limitation for laboratory cultures. One important approach to overcome these shortcomings is to provide sensitive genetic methods to unravel patterns of biodiversity, population structure and gene flow in natural populations. In this study we present five sets of microsatellite markers developed for the isopods Asellus aquaticus and Proasellus slavus, the cyclopoides Paracyclops fimbriatus and Acanthocyclops sensitivus and the harpacticoide Bryocamptus echinatus (Crustacea). Two of these species were subjected to detailed population genetic analyses: We studied 501 specimens of Asellus aquaticus from four different regions in Northern Germany using nine microsatellite markers and 70 specimens of Bryocamptus echinatus using nine microsatellite markers from three different sampling sites in South-Western Germany. Our results show that genetic diversity is high (A. aquaticus: 10 to 20 and B. echinatus: 4 to 18 alleles per locus) among populations of aquatic invertebrates, populations are highly differentiated (FST > 0.2) and genetic differentiation was associated with geographic patterns. Applications of molecular genetic methods and their use for the detection of hydrological exchange processes relevant for drinking water suppliers are demonstrated and discussed.


Assuntos
Ecossistema , Água Subterrânea , Animais , Variação Genética , Invertebrados/genética , Repetições de Microssatélites
4.
Genome Biol Evol ; 13(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34865004

RESUMO

Hybridization and introgression are recognized as an important source of variation that influence adaptive processes; both phenomena are frequent in the genus Daphnia, a keystone zooplankton taxon in freshwater ecosystems that comprises several species complexes. To investigate genome-wide consequences of introgression between species, we provide here the first high-quality genome assembly for a member of the Daphnia longispina species complex, Daphnia galeata. We further resequenced 49 whole genomes of three species of the complex and their interspecific hybrids both from genotypes sampled in the water column and from single resting eggs extracted from sediment cores. Populations from habitats with diverse ecological conditions offered an opportunity to study the dynamics of hybridization linked to ecological changes and revealed a high prevalence of hybrids. Using phylogenetic and population genomic approaches, we provide first insights into the intra- and interspecific genome-wide variability in this species complex and identify regions of high divergence. Finally, we assess the length of ancestry tracts in hybrids to characterize introgression patterns across the genome. Our analyses uncover a complex history of hybridization and introgression reflecting multiple generations of hybridization and backcrossing in the Daphnia longispina species complex. Overall, this study and the new resources presented here pave the way for a better understanding of ancient and contemporary gene flow in the species complex and facilitate future studies on resting egg banks accumulating in lake sediment.


Assuntos
Daphnia , Repetições de Microssatélites , Animais , Daphnia/genética , Ecossistema , Variação Genética , Hibridização Genética , Filogenia
5.
BMC Evol Biol ; 17(1): 227, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29166859

RESUMO

BACKGROUND: Genetically divergent cryptic species are frequently detected by molecular methods. These discoveries are often a byproduct of molecular barcoding studies in which fragments of a selected marker are used for species identification. Highly divergent mitochondrial lineages and putative cryptic species are even detected in intensively studied animal taxa, such as the crustacean genus Daphnia. Recently, eleven such lineages, exhibiting genetic distances comparable to levels observed among well-defined species, were recorded in the D. longispina species complex, a group that contains several key taxa of freshwater ecosystems. We tested if three of those lineages represent indeed distinct species, by analyzing patterns of variation of ten nuclear microsatellite markers in six populations. RESULTS: We observed a discordant pattern between mitochondrial and nuclear DNA, as all individuals carrying one of the divergent mitochondrial lineages grouped at the nuclear level with widespread, well-recognized species coexisting at the same localities (Daphnia galeata, D. longispina, and D. cucullata). CONCLUSIONS: A likely explanation for this pattern is the introgression of the mitochondrial genome of undescribed taxa into the common species, either in the distant past or after long-distance dispersal. The occurrence of highly divergent but rare mtDNA lineages in the gene pool of widespread species would suggest that hybridization and introgression in the D. longispina species complex is frequent even across large phylogenetic distances, and that discoveries of such distinct clades must be interpreted with caution. However, maintenance of ancient polymorphisms through selection is another plausible alternative that may cause the observed discordance and cannot be entirely excluded.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Daphnia/genética , Variação Genética , Filogenia , Animais , Hibridização Genética , Repetições de Microssatélites/genética , Especificidade da Espécie
6.
Mol Ecol ; 18(8): 1616-28, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19298264

RESUMO

Cyclic parthenogenesis, the alternation of parthenogenetic and sexual reproduction, can lead to a wide scope of population structures, ranging from almost monoclonal to genetically highly diverse populations. In addition, sexual reproduction in aquatic cyclic parthenogens is associated with the production of dormant stages, which both enhance potential gene flow among populations as well as impact local evolutionary rates through the formation of dormant egg banks. Members of the cladoceran genus Daphnia are widely distributed key organisms in freshwater habitats, which mostly exhibit this reproduction mode. We assessed patterns of genetic variation within and among populations in the eurytopic and morphologically variable species Daphnia longispina, using data from both nuclear (13 microsatellite loci) and mitochondrial (partial sequencing of the 12S rRNA gene) markers from a set of populations sampled across Europe. Most populations were characterized by very high clonal diversity, reflecting an important impact of sexual reproduction and low levels of clonal selection. Among-population genetic differentiation was very high for both nuclear and mitochondrial markers, and no strong pattern of isolation by distance was observed. We also did not observe any substantial genetic differentiation among traditionally recognized morphotypes of D. longispina. Our findings of high levels of within-population genetic variation combined with high among-population genetic differentiation are in line with predictions of the monopolization hypothesis, which suggests that in species with rapid population growth and potential for local adaptation, strong priority effects due to monopolization of resources lead to reduced levels of gene flow.


Assuntos
Daphnia/genética , Variação Genética , Genética Populacional , Partenogênese/genética , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Europa (Continente) , Marcadores Genéticos , Haplótipos , Repetições de Microssatélites , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...