Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535570

RESUMO

Xylella fastidiosa (Xf) is a global bacterial threat for a diversity of plants, including olive trees. However, current understanding of host responses upon Xf-infection is limited to allow early disease prediction, diagnosis, and sustainable strategies for breeding on plant tolerance. Recently, we identified a major complex trait for early de novo programming, named CoV-MAC-TED, by comparing early transcriptome data during plant cell survival with SARS-CoV-2-infected human cells. This trait linked ROS/RNS balancing during first hours of stress perception with increased aerobic fermentation connected to alpha-tubulin-based cell restructuration and control of cell cycle progression. Furthermore, our group had advanced concepts and strategies for breeding on plant holobionts. Here, we studied tolerance against Xf-infection by applying a CoV-MAC-TED-related gene set to (1) progress proof-of-principles, (2) highlight the importance of individual host responses for knowledge gain, (3) benefit sustainable production of Xf-threatened olive, (4) stimulate new thinking on principle roles of secondary metabolite synthesis and microbiota for system equilibration and, (5) advance functional marker development for resilience prediction including tolerance to Xf-infections. We performed hypothesis-driven complex analyses in an open access transcriptome of primary target xylem tissues of naturally Xf-infected olive trees of the Xf-tolerant cv. Leccino and the Xf-susceptible cv. Ogliarola. The results indicated that cyanide-mediated equilibration of oxygen-dependent respiration and carbon-stress alleviation by the help of increased glycolysis-driven aerobic fermentation paths and phenolic metabolism associate to tolerance against Xf. Furthermore, enhanced alternative oxidase (AOX) transcript levels through transcription Gleichschaltung linked to quinic acid synthesis appeared as promising trait for functional marker development. Moreover, the results support the idea that fungal endophytes strengthen Xf-susceptible genotypes, which lack efficient AOX functionality. Overall, this proof-of-principles approach supports the idea that efficient regulation of the multi-functional AOX gene family can assist selection on multiple-resilience, which integrates Xf-tolerance, and stimulates future validation across diverse systems.

2.
Physiol Plant ; 175(1): e13847, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36562612

RESUMO

We investigated SNPs in alternative oxidase (AOX) genes and their connection to ecotype origins (climate, altitude, and rainfall) by using genomic data sets of Arabidopsis and rice populations from 1190 and 90 ecotypes, respectively. Parameters were defined to detect non-synonymous SNPs in the AOX ORF, which revealed amino acid (AA) changes in AOX1c, AOX1d, and AOX2 from Arabidopsis and AOX1c from rice in comparison to AOX references from Columbia-0 and Japonica ecotypes, respectively. Among these AA changes, Arabidopsis AOX1c_A161E&G165R and AOX1c_R242S revealed a link to high rainfall and high altitude, respectively, while all other changes in Arabidopsis and rice AOX was connected to high altitude and rainfall. Comparative 3D modeling showed that all mutant AOX presented structural differences in relation to the respective references. Molecular docking analysis uncovered lower binding affinity values between AOX and the substrate ubiquinol for most of the identified structures compared to their reference, indicating better enzyme-substrate binding affinities. Thus, our in silico data suggest that the majority of the AA changes found in the available ecotypes will confer better enzyme-subtract interactions and thus indicate environment-related, more efficient AOX activity.


Assuntos
Arabidopsis , Oryza , Arabidopsis/metabolismo , Oryza/metabolismo , Ecótipo , Altitude , Simulação de Acoplamento Molecular , Proteínas de Plantas/metabolismo , Proteínas Mitocondriais/metabolismo
3.
Plants (Basel) ; 11(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015448

RESUMO

Plants subjected to stress need to respond rapidly and efficiently to acclimatize and survive. In this paper, we investigated a selected gene set potentially involved in early cell reprogramming in two rice genotypes with contrasting salinity tolerance (Pokkali tolerant and IR29 susceptible) in order to advance knowledge of early molecular mechanisms of rice in dealing with salt stress. Selected genes were evaluated in available transcriptomic data over a short period of 24 h and involved enzymes that avoid ROS formation (AOX, UCP and PTOX), impact ATP production (PFK, ADH and COX) or relate to the antioxidant system. Higher transcript accumulation of AOX (ROS balancing), PFK and ADH (alcohol fermentation) was detected in the tolerant genotype, while the sensitive genotype revealed higher UCP and PTOX transcript levels, indicating a predominant role for early transcription of AOX and fermentation in conferring salt stress tolerance to rice. Antioxidant gene analyses supported higher oxidative stress in IR29, with transcript increases of cytosolic CAT and SOD from all cell compartments (cytoplasm, peroxisome, chloroplast and mitochondria). In contrast, Pokkali increased mRNA levels from the AsA-GSH cycle as cytosolic/mitochondrial DHAR was involved in ascorbate recovery. In addition, these responses occurred from 2 h in IR29 and 10 h in Pokkali, indicating early but ineffective antioxidant activity in the susceptible genotype. Overall, our data suggest that AOX and ADH can play a critical role during early cell reprogramming for improving salt stress tolerance by efficiently controlling ROS formation in mitochondria. We discuss our results in relation to gene engineering and editing approaches to develop salinity-tolerant crops.

4.
Front Plant Sci ; 12: 686274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659277

RESUMO

Plants respond to environmental cues via adaptive cell reprogramming that can affect whole plant and ecosystem functionality. Microbiota constitutes part of the inner and outer environment of the plant. This Umwelt underlies steady dynamics, due to complex local and global biotic and abiotic changes. Hence, adaptive plant holobiont responses are crucial for continuous metabolic adjustment at the systems level. Plants require oxygen-dependent respiration for energy-dependent adaptive morphology, such as germination, root and shoot growth, and formation of adventitious, clonal, and reproductive organs, fruits, and seeds. Fermentative paths can help in acclimation and, to our view, the role of alternative oxidase (AOX) in coordinating complex metabolic and physiological adjustments is underestimated. Cellular levels of sucrose are an important sensor of environmental stress. We explored the role of exogenous sucrose and its interplay with AOX during early seed germination. We found that sucrose-dependent initiation of fermentation during the first 12 h after imbibition (HAI) was beneficial to germination. However, parallel upregulated AOX expression was essential to control negative effects by prolonged sucrose treatment. Early downregulated AOX activity until 12 HAI improved germination efficiency in the absence of sucrose but suppressed early germination in its presence. The results also suggest that seeds inoculated with arbuscular mycorrhizal fungi (AMF) can buffer sucrose stress during germination to restore normal respiration more efficiently. Following this approach, we propose a simple method to identify organic seeds and low-cost on-farm perspectives for early identifying disease tolerance, predicting plant holobiont behavior, and improving germination. Furthermore, the research strengthens the view that AOX can serve as a powerful functional marker source for seed hologenomes.

5.
Front Immunol ; 12: 673692, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305903

RESUMO

In a perspective entitled 'From plant survival under severe stress to anti-viral human defense' we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named 'ReprogVirus' was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the 'ReprogVirus platform' was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to 'RegroVirus' complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called 'CoV-MAC-TED'. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target 'CoV-MAC-TED' in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that 'de-stressing' disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.


Assuntos
Reprogramação Celular/genética , Herança Multifatorial/genética , SARS-CoV-2/patogenicidade , Acetilserotonina O-Metiltransferasa/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ciclo Celular/genética , Bases de Dados Genéticas , Daucus carota/genética , Daucus carota/crescimento & desenvolvimento , Fermentação , Perfilação da Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tubulina (Proteína)/genética , Vírus/patogenicidade
6.
Int J Biol Macromol ; 187: 528-543, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34302870

RESUMO

Ascorbate-glutathione (AsA-GSH) cycle plays an important role in tuning beneficial ROS accumulation for intracellular signals and imparts plant tolerance to oxidative stress by detoxifying excess of ROS. Here, we present genome-wide identification of AsA-GSH cycle genes (APX, MDHAR, DHAR, and GR) in several leguminous species and expression analyses in G. max during stress, germination and tissue development. Our data revealed 24 genes in Glycine genus against the maximum of 15 in other leguminous species, which was due to 9 pars of duplicated genes mostly originated from sub/neofunctionalization. Cytosolic APX and MDHAR genes were highly expressed in different tissues and physiological conditions. Germination induced genes encoding AsA-GSH proteins from different cell compartments, whereas vegetative phase (leaves) stimulated predominantly genes related to chloroplast/mitochondria proteins. Moreover, cytosolic APX-1, 2, MDHAR-1a, 1b and GR genes were the primary genes linked to senescence and biotic stresses, while stAPX-a, b and GR (from organelles) were the most abiotic stress related genes. Biotic and abiotic stress tolerant genotypes generally showed increased MDHAR, DHAR and/or GR mRNA levels compared to susceptible genotypes. Overall, these data clarified evolutionary events in leguminous plants and point to the functional specificity of duplicated genes of the AsA-GSH cycle in G. max.


Assuntos
Ácido Ascórbico/metabolismo , Evolução Molecular , Duplicação Gênica , Glutationa/metabolismo , Glycine max/genética , Estresse Oxidativo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
7.
Front Plant Sci ; 10: 1134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611888

RESUMO

Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect plants throughout life cycles against variable abiotic and biotic conditions. We provide proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability. Our perspective on AOX as relevant coordinator of cell reprogramming is supported by real-time polymerase chain reaction (PCR) analyses and gross metabolism data from calorespirometry complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen (EPPO)-stressed, and endophyte-treated seeds. In silico studies on public experimental data from diverse species strengthen generality of our insights. Finally, we highlight ready-to-use concepts for plant selection and optimizing in vivo and in vitro propagation that do not require further details on molecular physiology and metabolism. This is demonstrated by applying our research & technology concepts to pea genotypes with differential yield performance in multilocation fields and chickpea types known for differential robustness in the field. By using these concepts and tools appropriately, also other marker candidates than AOX and complex genomics data can be efficiently validated for prebreeding and seed vigor prediction.

8.
J Bioenerg Biomembr ; 51(5): 355-370, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506801

RESUMO

Plastid terminal oxidase (PTOX) is a chloroplast enzyme that catalyzes oxidation of plastoquinol (PQH2) and reduction of molecular oxygen to water. Its function has been associated with carotenoid biosynthesis, chlororespiration and environmental stress responses in plants. In the majority of plant species, a single gene encodes the protein and little is known about events of PTOX gene duplication and their implication to plant metabolism. Previously, two putative PTOX (PTOX1 and 2) genes were identified in Glycine max, but the evolutionary origin and the specific function of each gene was not explored. Phylogenetic analyses revealed that this gene duplication occurred apparently during speciation involving the Glycine genus ancestor, an event absent in all other available plant leguminous genomes. Gene expression evaluated by RT-qPCR and RNA-seq data revealed that both PTOX genes are ubiquitously expressed in G. max tissues, but their mRNA levels varied during development and stress conditions. In development, PTOX1 was predominant in young tissues, while PTOX2 was more expressed in aged tissues. Under stress conditions, the PTOX transcripts varied according to stress severity, i.e., PTOX1 mRNA was prevalent under mild or moderate stresses while PTOX2 was predominant in drastic stresses. Despite the high identity between proteins (97%), molecular docking revealed that PTOX1 has higher affinity to substrate plastoquinol than PTOX2. Overall, our results indicate a functional relevance of this gene duplication in G. max metabolism, whereas PTOX1 could be associated with chloroplast effectiveness and PTOX2 to senescence and/or apoptosis.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Glycine max/genética , Oxirredutases/genética , Proteínas de Cloroplastos/genética , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Plastídeos/enzimologia , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , RNA Mensageiro/metabolismo , Glycine max/crescimento & desenvolvimento , Estresse Fisiológico/genética
9.
J Bioenerg Biomembr ; 51(2): 151-164, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30617736

RESUMO

Plant plastoquinol oxidase (PTOX) is a chloroplast oxidoreductase involved in carotenoid biosynthesis, chlororespiration, and response to environmental stresses. The present study aimed to gain insight of the potential role of nucleotide/amino acid changes linked to environmental adaptation in PTOX gene/protein from Arabidopsis thaliana accessions. SNPs in the single-copy PTOX gene were identified in 1190 accessions of Arabidopsis using the Columbia-0 PTOX as a reference. The identified SNPs were correlated with geographical distribution of the accessions according to altitude, climate, and rainfall. Among the 32 identified SNPs in the coding region of the PTOX gene, 16 of these were characterized as non-synonymous SNPs (in which an AA is altered). A higher incidence of AA changes occurred in the mature protein at positions 78 (31%), 81 (31.4%), and 323 (49.9%). Three-dimensional structure prediction indicated that the AA change at position 323 (D323N) leads to a PTOX structure with the most favorable interaction with the substrate plastoquinol, when compared with the reference PTOX structure (Columbia-0). Molecular docking analysis suggested that the most favorable D323N PTOX-plastoquinol interaction is due to a better enzyme-substrate binding affinity. The molecular dynamics revealed that plastoquinol should be more stable in complex with D323N PTOX, likely due a restraint mechanism in this structure that stabilize plastoquinol inside of the reaction center. The integrated analysis made from accession geographical distribution and PTOX SNPs indicated that AA changes in PTOX are related to altitude and rainfall, potentially due to an adaptive positive environmental selection.


Assuntos
Aclimatação , Altitude , Proteínas de Arabidopsis , Arabidopsis , Simulação de Acoplamento Molecular , Oxirredutases , Polimorfismo de Nucleotídeo Único , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/química , Plastoquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA