Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 34(16): 7150-7158, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36032556

RESUMO

Using hydrated silicate ionic liquids, phase selection and framework silicon-to-aluminum ratio during inorganic zeolite synthesis were studied as a function of batch composition. Consisting of homogeneous single phasic liquids, this synthesis concept allows careful control of crystallization parameters and evaluation of yield and sample homogeneity. Ternary phase diagrams were constructed for syntheses at 90 °C for 1 week. The results reveal a cation-dependent continuous relation between batch stoichiometry and framework aluminum content, valid across the phase boundaries of all different zeolites formed in the system. The framework aluminum content directly correlates to the type of alkali cation and gradually changes with batch alkalinity and dilution. This suggests that the observed zeolites form through a solution-mediated mechanism involving the concerted assembly of soluble cation-oligomer ion pairs. Phase selection is a consequence of the stability for a particular framework at the given aluminum content and alkali type.

2.
Faraday Discuss ; 235(0): 162-182, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35660805

RESUMO

Probing nucleation and growth of porous crystals at a molecular level remains a cumbersome experimental endeavour due to the complexity of the synthesis media involved. In particular, the study of zeolite formation is hindered as these typically form in multiphasic synthesis media, which restricts experimental access to crystallisation processes. Zeolite formation from single phasic hydrated silicate ionic liquids (HSiL) opens new possibilities. In this work, HSiL zeolite crystallisation is investigated in situ using a specifically designed conductivity measurement set-up yielding access to crystallisation kinetics. Based on the conductivity data and final yields, a crystallisation model explaining the results based on a surface growth mechanism was derived. The excellent agreement between experiment and theory indicates zeolite crystallisation from highly ionic media proceeds via a multi-step mechanism, involving an initial reversible surface condensation of a growth unit, followed by incorporation of that unit into the growing crystal. The first step is governed by the liquid phase concentration and surface energy, while the final step shows a correlation to the mobility of the cation involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA