Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biodivers Data J ; 9: e60604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510578

RESUMO

BACKGROUND: Syzygium samarangense (Wax apple) is an important tropical fruit tree with high economic and nutrient value and is widely planted in the tropics or subtropics of Asia. Post-harvest water-soaked brown lesions were observed on mature fruits of ornamental wax apples in Chiang Rai Province, Thailand. A fungus with morphological characters, similar to Lasiodiplodia, was consistently isolated from symptomatic fruits. Phylogenetic analyses, based on ITS, LSU, TEF1-a and tub2, revealed that our isolates were closely related to, but phylogenetically distinct from, Lasiodiplodia rubropurpurea. NEW INFORMATION: Morphological comparisons indicated that pycnidia and conidiogenous cells of our strains were significantly larger than L. rubropurpurea. Comparisons of base-pair differences in the four loci confirmed that the species from wax apple was distinct from L. rubropurpurea and a new species, L. syzygii sp. nov., is introduced to accommodate it. Pathogenicity tests confirmed the newly-introduced species as the pathogen of this post-harvest water-soaked brown lesion disease on wax apples.

2.
Phytopathology ; 110(10): 1727-1736, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32460690

RESUMO

The Lasiodiplodia theobromae genome encodes numerous glycoside hydrolases involved in organic matter degradation and conducive to pathogen infection, whereas their molecular mechanisms are still largely unknown. Here, we identified the glycoside hydrolase family 28 endopolygalacturonase LtEPG1 in L. theobromae and characterized its function in detail. LtEPG1 acts as a virulence factor during L. theobromae infection. Overexpression and silencing of LtEPG1 in L. theobromae led to significantly increased and decreased lesion areas, respectively. Further, the high transcript level of LtEPG1 during the infection process supported its virulence function. Polygalacturonase activity of LtEPG1 was substantiated by detecting its ability to degrade pectin. Furthermore, LtEPG1 functioned as microbe-associated molecular patterns during the infection process. Both transient expression of LtEPG1 in planta and infiltration of purified LtEPG1 triggered cell death in Nicotiana benthamiana. Site-directed mutation of LtEPG1 indicated that the enzymatic activity of LtEPG1 is independent from its elicitor activity. A protein kinase, KINß1, was shown to interact in the yeast two-hybrid system with LtEPG1. This interaction was further confirmed in vitro using a pull-down assay. Our data indicate that LtEPG1 functions as a polygalacturonase and also serves as an elicitor with two independent mechanisms. Moreover, LtEPG1 may be able to manipulate host immune responses by regulating the KINß1-mediated signal pathway and consequently promote its own successful infection and symptom development.


Assuntos
Ascomicetos , Vitis , Doenças das Plantas , Poligalacturonase/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA