Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766239

RESUMO

Background: A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the Plasmodium falciparum 's life cycle. Methods: We analyzed 325 P. falciparum whole genome sequences from Zambia, in addition to 791 genomes from five other African countries available in the MalariaGEN Pf3k Rdatabase. Ten vaccine antigens spanning three life-history stages were examined for genetic and structural variations, using population genetics measures, haplotype network analysis, and 3D structure selection analysis. Findings: Among the ten antigens analyzed, only three in the transmission-blocking vaccine category display P . falciparum 3D7 as the dominant haplotype. The antigens AMA1, CSP, MSP1 19 and CelTOS, are much more diverse than the other antigens, and their epitope regions are under moderate to strong balancing selection. In contrast, Rh5 , a blood stage antigen, displays low diversity yet slightly stronger immune selection in the merozoite-blocking epitope region. Except for CelTOS , the transmission-blocking antigens Pfs25 , Pfs48/45 , Pfs230 , Pfs47 , and Pfs28 exhibit minimal diversity and no immune selection in epitopes that induce strain-transcending antibodies, suggesting potential effectiveness of 3D7-based vaccines in blocking transmission. Interpretations: These findings offer valuable insights into the selection of optimal vaccine candidates against P. falciparum . Based on our results, we recommend prioritizing conserved merozoite antigens and transmission-blocking antigens. Combining these antigens in multi-stage approaches may be particularly promising for malaria vaccine development initiatives. Funding: Purdue Department of Biological Sciences; Puskas Memorial Fellowship; National Institute of Allergy and Infectious Diseases (U19AI089680). Research in context: Evidence before this study: Decades of research on the most virulent malaria parasite, Plasmodium falciparum , have yielded multiple antigen candidates of pre-erythrocytic, blood-stage, and transmission-blocking vaccines in varying stages of development from preclinical development to more advanced clinical trials. The malaria vaccine, RTS,S/AS01, which was constructed using the C-terminal and NANP repeat region of the Circumsporozoite Protein ( CSP ) from the African reference strain 3D7, was approved and recommended for use in 2021. However, the vaccine's lower efficacy is likely a result of the genetic polymorphism of the target antigen shown by studies on natural variation in CSP . Similarly, another more recent pre-erythrocytic vaccine, R21/Matrix-M, showed great promise in clinical trials and was recommended in late 2023 by the WHO for use for prevention of malaria in children, but is also multi-dose and CSP -based. To maximize vaccine efficacy, it would be more strategic to first understand diversity and variation of antigens across the three types of vaccine classes, targeting various stages of the P. falciparum life cycle. Previous studies have reported analyses of vaccine candidate antigens but were mostly limited to pre-erythrocytic and blood-stage antigens, with less focus on transmission-blocking antigens. These studies revealed that most of the pre-erythrocytic and blood-stage antigens are of high diversity due to balancing selection, posing challenges for vaccine design to encompass the antigenic variation. A search conducted on PubMed on April 1, 2024, for relevant published research which used the terms "malaria vaccine", " Plasmodium falciparum " [not " vivax "], "selection" and "diversity" yielded 48 studies between 1996 and the present day, with only 14 published studies in the past 3 years. This emphasizes the need for more studies assessing genetic diversity and selection of potential P. falciparum vaccine candidates to aid in more effective vaccine development efforts. A similar search with the terms "transmission-blocking vaccine", "malaria", " Plasmodium falciparum ", not " vivax ", "selection" and "diversity" without any date or language restrictions revealed three relevant studies. This warrants future studies to explore transmission-blocking vaccines in this context. Added value of this study: By comparing the genetic and structural analyses of transmission-blocking antigens with pre-erythrocytic and blood-stage antigens, we identify promising P. falciparum vaccine antigens characterized by their conservation with low balancing selection and the presence of infection/transmission-blocking epitopes, which are essential for informing the development of new malaria vaccines. This comprehensive workflow can be adopted for studying the genetic and structural variation of other P. falciparum vaccine targets before developing the next generation of malaria vaccines for effectiveness against natural parasite populations. Implications of this study: Our suggested strategies for designing malaria vaccines include two possible approaches. We emphasize the development of a multi-stage vaccine that combines critical components such as anti-merozoite ( Rh5 ) and transmission-blocking antigens ( Pfs25 , Pfs28 , Pfs48/45 , Pfs230 ). Alternatively, we suggest the creation of transmission-blocking vaccines specifically targeting Pfs25 , Pfs28 and Pfs48/45 . These innovative approaches show great potential in advancing the development of more potent and effective malaria vaccines for the future.

2.
Commun Med (Lond) ; 4(1): 67, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582941

RESUMO

BACKGROUND: Genomic surveillance is crucial for monitoring malaria transmission and understanding parasite adaptation to interventions. Zambia lacks prior nationwide efforts in malaria genomic surveillance among African countries. METHODS: We conducted genomic surveillance of Plasmodium falciparum parasites from the 2018 Malaria Indicator Survey in Zambia, a nationally representative household survey of children under five years of age. We whole-genome sequenced and analyzed 241 P. falciparum genomes from regions with varying levels of malaria transmission across Zambia and estimated genetic metrics that are informative about transmission intensity, genetic relatedness between parasites, and selection. RESULTS: We provide genomic evidence of widespread within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in Zambia. Our analysis reveals country-level clustering of parasites from Zambia and neighboring regions, with distinct separation in West Africa. Within Zambia, identity by descent (IBD) relatedness analysis uncovers local spatial clustering and rare cases of long-distance sharing of closely related parasite pairs. Genomic regions with large shared IBD segments and strong positive selection signatures implicate genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Furthermore, differences in selection signatures, including drug resistance loci, are observed between eastern and western Zambian parasite populations, suggesting variable transmission intensity and ongoing drug pressure. CONCLUSIONS: Our findings enhance our understanding of nationwide P. falciparum transmission in Zambia, establishing a baseline for analyzing parasite genetic metrics as they vary over time and space. These insights highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.


Malaria is caused by a parasite that is spread to humans via mosquito bites. It is a leading cause of death in children under five years old in sub-Saharan Africa. Analysis of the malaria parasite's complete set of DNA (its genome) can help us to understand transmission of the disease and how this changes in response to different strategies to control the disease. We analyzed the genomes of malaria parasites from children across Zambia. Our study revealed that 77% of children harbored multiple parasite strains, which suggests that local transmission (transmission between people within the same local area) is high. Genetic evidence for long-distance transmission was rarer. Furthermore, our findings suggest parasites are evolving in response to antimalarial drugs. Our study enhances our understanding of malaria dynamics in Zambia and may help to inform strategies for improved surveillance and control.

3.
medRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370674

RESUMO

Genomic surveillance plays a critical role in monitoring malaria transmission and understanding how the parasite adapts in response to interventions. We conducted genomic surveillance of malaria by sequencing 241 Plasmodium falciparum genomes from regions with varying levels of malaria transmission across Zambia. We found genomic evidence of high levels of within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in the country. We identified country-level clustering of parasites from Zambia and neighboring countries, and distinct clustering of parasites from West Africa. Within Zambia, our identity by descent (IBD) relatedness analysis uncovered spatial clustering of closely related parasite pairs at the local level and rare cases of long-distance sharing. Genomic regions with large shared IBD segments and strong positive selection signatures identified genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Together, our findings enhance our understanding of P. falciparum transmission nationwide in Zambia and highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.

4.
BMC Genomics ; 25(1): 223, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424499

RESUMO

BACKGROUND: Switchgrass (Panicum virgatum L.) is a warm-season perennial (C4) grass identified as an important biofuel crop in the United States. It is well adapted to the marginal environment where heat and moisture stresses predominantly affect crop growth. However, the underlying molecular mechanisms associated with heat and drought stress tolerance still need to be fully understood in switchgrass. The methylation of H3K4 is often associated with transcriptional activation of genes, including stress-responsive. Therefore, this study aimed to analyze genome-wide histone H3K4-tri-methylation in switchgrass under heat, drought, and combined stress. RESULTS: In total, ~ 1.3 million H3K4me3 peaks were identified in this study using SICER. Among them, 7,342; 6,510; and 8,536 peaks responded under drought (DT), drought and heat (DTHT), and heat (HT) stresses, respectively. Most DT and DTHT peaks spanned 0 to + 2000 bases from the transcription start site [TSS]. By comparing differentially marked peaks with RNA-Seq data, we identified peaks associated with genes: 155 DT-responsive peaks with 118 DT-responsive genes, 121 DTHT-responsive peaks with 110 DTHT-responsive genes, and 175 HT-responsive peaks with 136 HT-responsive genes. We have identified various transcription factors involved in DT, DTHT, and HT stresses. Gene Ontology analysis using the AgriGO revealed that most genes belonged to biological processes. Most annotated peaks belonged to metabolite interconversion, RNA metabolism, transporter, protein modifying, defense/immunity, membrane traffic protein, transmembrane signal receptor, and transcriptional regulator protein families. Further, we identified significant peaks associated with TFs, hormones, signaling, fatty acid and carbohydrate metabolism, and secondary metabolites. qRT-PCR analysis revealed the relative expressions of six abiotic stress-responsive genes (transketolase, chromatin remodeling factor-CDH3, fatty-acid desaturase A, transmembrane protein 14C, beta-amylase 1, and integrase-type DNA binding protein genes) that were significantly (P < 0.05) marked during drought, heat, and combined stresses by comparing stress-induced against un-stressed and input controls. CONCLUSION: Our study provides a comprehensive and reproducible epigenomic analysis of drought, heat, and combined stress responses in switchgrass. Significant enrichment of H3K4me3 peaks downstream of the TSS of protein-coding genes was observed. In addition, the cost-effective experimental design, modified ChIP-Seq approach, and analyses presented here can serve as a prototype for other non-model plant species for conducting stress studies.


Assuntos
Panicum , Panicum/metabolismo , Temperatura Alta , Lisina/metabolismo , Histonas/metabolismo , Secas , Estresse Fisiológico/genética , Metilação , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
5.
Food Chem X ; 18: 100660, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37025416

RESUMO

The objective of this study was to characterize the major proteomes and metabolites in beef exudate and determine their relationship to color and oxidative quality of beef muscles. Beef loin (LD) and tenderloin (PM) muscles were cut into sections, individually vacuum-packaged, and aged for 9, 16 and 23 days at 2 °C. Following aging, beef exudates were collected and analyzed for both proteomics and metabolomics profiles. Proteome analysis indicated clustering by muscle types, while metabolomics profiling further clustered the samples based on the aging periods. The PM exudate had a greater concentration of oxidative enzymes, while the LD exudate contained more glycolytic enzymes. Greater lipid, nucleotide, carnitine and glucoside metabolites were observed in LD and 23d exudates. HSP70 and laminin proteins, together with glucosides metabolites, were correlated to muscle oxidative stability. The results indicated that meat exudate could be a viable analytical matrix to determine changes in quality attributes of meat with aging.

6.
FASEB J ; 37(3): e22785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36794668

RESUMO

The epigenome of stem cells occupies a critical interface between genes and environment, serving to regulate expression through modification by intrinsic and extrinsic factors. We hypothesized that aging and obesity, which represent major risk factors for a variety of diseases, synergistically modify the epigenome of adult adipose stem cells (ASCs). Using integrated RNA- and targeted bisulfite-sequencing in murine ASCs from lean and obese mice at 5- and 12-months of age, we identified global DNA hypomethylation with either aging or obesity, and a synergistic effect of aging combined with obesity. The transcriptome of ASCs in lean mice was relatively stable to the effects of age, but this was not true in obese mice. Functional pathway analyses identified a subset of genes with critical roles in progenitors and in diseases of obesity and aging. Specifically, Mapt, Nr3c2, App, and Ctnnb1 emerged as potential hypomethylated upstream regulators in both aging and obesity (AL vs. YL and AO vs. YO), and App, Ctnnb1, Hipk2, Id2, and Tp53 exhibited additional effects of aging in obese animals. Furthermore, Foxo3 and Ccnd1 were potential hypermethylated upstream regulators of healthy aging (AL vs. YL), and of the effects of obesity in young animals (YO vs. YL), suggesting that these factors could play a role in accelerated aging with obesity. Finally, we identified candidate driver genes that appeared recurrently in all analyses and comparisons undertaken. Further mechanistic studies are needed to validate the roles of these genes capable of priming ASCs for dysfunction in aging- and obesity-associated pathologies.


Assuntos
Tecido Adiposo , Epigenoma , Animais , Camundongos , Tecido Adiposo/metabolismo , Transcriptoma , Camundongos Obesos , Obesidade/metabolismo , Células-Tronco/metabolismo
7.
Plants (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616341

RESUMO

We conducted a genome-wide transcriptomic analysis of three drought tolerant and sensitive genotypes of common bean to examine their transcriptional responses to terminal drought stress. We then conducted pairwise comparisons between the root and leaf transcriptomes from the resulting tissue based on combined transcriptomic data from the tolerant and sensitive genotypes. Our transcriptomic data revealed that 491 (6.4%) DEGs (differentially expressed genes) were upregulated in tolerant genotypes, whereas they were downregulated in sensitive genotypes; likewise, 396 (5.1%) DEGs upregulated in sensitive genotypes were downregulated in tolerant genotypes. Several transcription factors, heat shock proteins, and chaperones were identified in the study. Several DEGs in drought DB (data Base) overlapped between genotypes. The GO (gene ontology) terms for biological processes showed upregulation of DEGs in tolerant genotypes for sulfate and drug transmembrane transport when compared to sensitive genotypes. A GO term for cellular components enriched with upregulated DEGs for the apoplast in tolerant genotypes. These results substantiated the temporal pattern of root growth (elongation and initiation of root growth), and ABA-mediated drought response in tolerant genotypes. KEGG (kyoto encyclopedia of genes and genomes) analysis revealed an upregulation of MAPK (mitogen activated protein kinase) signaling pathways and plant hormone signaling pathways in tolerant genotypes. As a result of this study, it will be possible to uncover the molecular mechanisms of drought tolerance in response to terminal drought stress in the field. Further, genome-wide transcriptomic analysis of both tolerant and sensitive genotypes will assist us in identifying potential genes that may contribute to improving drought tolerance in the common bean.

8.
Front Immunol ; 13: 990900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131928

RESUMO

Recent studies have shown that corn-derived cationic α-D-glucan nanoparticles, known as Nano-11, significantly increase the immune response when used as a vaccine adjuvant in mice and in pigs. Furthermore, the nanoparticles can be formulated with other immunostimulators such as poly(I:C), which further enhances the immune response. The current experiments were aimed at elucidating the mechanism of action of Nano-11 alone and in combination with poly(I:C). The effect of these adjuvants on porcine monocyte-derived dendritic cells (Mo-DCs) was determined by RNA-sequencing, supplemented with flow cytometry, cytokine analysis, and Western blots. Adsorption of poly(I:C) to Nano-11 reduced its cytotoxicity for Mo-DCs. Exposure of Mo-DCs to Nano-11 and Nano-11/poly(I:C) induced differential expression of 979 and 2016 genes, respectively. Gene Ontology enrichment and KEGG pathway analysis revealed many changes in gene expression related to inflammation, innate immunity, immune response to infections, and metabolism. Nano-11 and Nano-11/poly(I:C) induced maturation of the Mo-DCs as indicated by increased expression of costimulatory molecules and MHC II. Increased expression of genes downstream of p38 MAPK activation revealed a role for this signaling pathway in the activation of Mo-DCs by the adjuvants. This was confirmed by Western blot and inhibition of TNF-secretion upon incubation with the p38 inhibitor SB203580. These experiments provide insights into the mechanism of action of the novel adjuvants Nano-11 and Nano-11/poly(I:C).


Assuntos
Glucanos , Nanopartículas , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos/metabolismo , Adjuvantes Farmacêuticos/farmacologia , Animais , Citocinas/metabolismo , Células Dendríticas , Glucanos/farmacologia , Camundongos , Poli I-C/metabolismo , Poli I-C/farmacologia , RNA/metabolismo , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
BMC Plant Biol ; 22(1): 107, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260072

RESUMO

BACKGROUND: Sustainable production of high-quality feedstock has been of great interest in bioenergy research. Despite the economic importance, high temperatures and water deficit are limiting factors for the successful cultivation of switchgrass in semi-arid areas. There are limited reports on the molecular basis of combined abiotic stress tolerance in switchgrass, particularly the combination of drought and heat stress. We used transcriptomic approaches to elucidate the changes in the response of switchgrass to drought and high temperature simultaneously. RESULTS: We conducted solely drought treatment in switchgrass plant Alamo AP13 by withholding water after 45 days of growing. For the combination of drought and heat effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after treatment imposition, total RNA was extracted, and RNA-Seq conducted. Out of a total of 32,190 genes, we identified 3912, as drought (DT) responsive genes, 2339 and 4635 as, heat (HT) and drought and heat (DTHT) responsive genes, respectively. There were 209, 106, and 220 transcription factors (TFs) differentially expressed under DT, HT and DTHT respectively. Gene ontology annotation identified the metabolic process as the significant term enriched in DTHT genes. Other biological processes identified in DTHT responsive genes included: response to water, photosynthesis, oxidation-reduction processes, and response to stress. KEGG pathway enrichment analysis on DT and DTHT responsive genes revealed that TFs and genes controlling phenylpropanoid pathways were important for individual as well as combined stress response. For example, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) from the phenylpropanoid pathway was induced by single DT and combinations of DTHT stress. CONCLUSION: Through RNA-Seq analysis, we have identified unique and overlapping genes in response to DT and combined DTHT stress in switchgrass. The combination of DT and HT stress may affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass which negatively impacts lignin synthesis and biomass production of switchgrass. The biological function of genes identified particularly in response to DTHT stress could further be confirmed by techniques such as single point mutation or RNAi.


Assuntos
Adaptação Fisiológica/genética , Desidratação/genética , Resposta ao Choque Térmico/genética , Panicum/genética , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
10.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768928

RESUMO

The Hessian fly is a destructive pest of wheat. Employing additional molecular strategies can complement wheat's native insect resistance. However, this requires functional characterization of Hessian-fly-responsive genes, which is challenging because of wheat genome complexity. The diploid Brachypodium distachyon (Bd) exhibits nonhost resistance to Hessian fly and displays phenotypic/molecular responses intermediate between resistant and susceptible host wheat, offering a surrogate genome for gene characterization. Here, we compared the transcriptomes of Biotype L larvae residing on resistant/susceptible wheat, and nonhost Bd plants. Larvae from susceptible wheat and nonhost Bd plants revealed similar molecular responses that were distinct from avirulent larval responses on resistant wheat. Secreted salivary gland proteins were strongly up-regulated in all larvae. Genes from various biological pathways and molecular processes were up-regulated in larvae from both susceptible wheat and nonhost Bd plants. However, Bd larval expression levels were intermediate between larvae from susceptible and resistant wheat. Most genes were down-regulated or unchanged in avirulent larvae, correlating with their inability to establish feeding sites and dying within 4-5 days after egg-hatch. Decreased gene expression in Bd larvae, compared to ones on susceptible wheat, potentially led to developmentally delayed 2nd-instars, followed by eventually succumbing to nonhost resistance defense mechanisms.


Assuntos
Brachypodium/imunologia , Resistência à Doença/genética , Nematóceros/genética , Triticum/imunologia , Animais , Perfilação da Expressão Gênica , Genoma/genética , Larva/genética , Nematóceros/embriologia , RNA-Seq , Transcriptoma/genética , Virulência/genética
11.
PLoS One ; 16(8): e0248199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34415905

RESUMO

The role the mammary epithelial circadian clock plays in gland development and lactation is unknown. We hypothesized that mammary epithelial clocks function to regulate mammogenesis and lactogenesis, and propose the core clock transcription factor BMAL1:CLOCK regulates genes that control mammary epithelial development and milk synthesis. Our objective was to identify transcriptional targets of BMAL1 in undifferentiated (UNDIFF) and lactogen differentiated (DIFF) mammary epithelial cells (HC11) using ChIP-seq. Ensembl gene IDs with the nearest transcriptional start site to ChIP-seq peaks were explored as potential targets, and represented 846 protein coding genes common to UNDIFF and DIFF cells and 2773 unique to DIFF samples. Genes with overlapping peaks between samples (1343) enriched cell-cell adhesion, membrane transporters and lipid metabolism categories. To functionally verify targets, an HC11 line with Bmal1 gene knocked out (BMAL1-KO) using CRISPR-CAS was created. BMAL1-KO cultures had lower cell densities over an eight-day growth curve, which was associated with increased (p<0.05) levels of reactive oxygen species and lower expression of superoxide dismutase 3 (Sod3). RT-qPCR analysis also found lower expression of the putative targets, prolactin receptor (Prlr), Ppara, and beta-casein (Csn2). Findings support our hypothesis and highlight potential importance of clock in mammary development and substrate transport.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Anemia Falciforme , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glândulas Mamárias Animais/fisiologia , Camundongos
12.
Food Chem Toxicol ; 154: 112288, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34089799

RESUMO

The developing human brain is uniquely vulnerable to methylmercury (MeHg) resulting in lasting effects especially in developing cortical structures. Here we assess by single-cell RNA sequencing (scRNAseq) persistent effects of developmental MeHg exposure in a differentiating cortical human-induced pluripotent stem cell (hiPSC) model which we exposed to in vivo relevant and non-cytotoxic MeHg (0.1 and 1.0 µM) concentrations. The cultures were exposed continuously for 6 days either once only during days 4-10, a stage representative of neural epithelial- and radial glia cells, or twice on days 4-10 and days 14-20, a somewhat later stage which includes intermediate precursors and early postmitotic neurons. After the completion of MeHg exposure the cultures were differentiated further until day 38 and then assessed for persistent MeHg-induced effects by scRNAseq. We report subtle, but significant changes in the population size of different cortical cell types/stages and cell cycle. We also observe MeHg-dependent differential gene expression and altered biological processes as determined by Gene Ontology analysis. Our data demonstrate that MeHg results in changes in gene expression in human developing cortical neurons that manifest well after cessation of exposure and that these changes are cell type-, developmental stage-, and exposure paradigm-specific.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Córtex Cerebral/química , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Front Physiol ; 12: 816675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185605

RESUMO

Cockroaches are important global urban pests from aesthetic and health perspectives. Insecticides represent the most cost-effective way to control cockroaches and limit their impacts on human health. However, cockroaches readily develop insecticide resistance, which can quickly limit efficacy of even the newest and most effective insecticide products. The goal of this research was to understand whole-body physiological responses in German cockroaches, at the metatranscriptome level, to defined insecticide selection pressures. We used the insecticide indoxacarb as the selecting insecticide, which is an important bait active ingredient for cockroach control. Six generations of selection with indoxacarb bait produced a strain with substantial (>20×) resistance relative to inbred control lines originating from the same parental stock. Metatranscriptome sequencing revealed 1,123 significantly differentially expressed (DE) genes in ≥two of three statistical models (81 upregulated and 1,042 downregulated; FDR P < 0.001; log2FC of ±1). Upregulated DE genes represented many detoxification enzyme families including cytochrome-P450 oxidative enzymes, hydrolases and glutathione-S-transferases. Interestingly, the majority of downregulated DE genes were from microbial and viral origins, indicating that selection for resistance is also associated with elimination of commensal, pathogenic and/or parasitic microbes. These microbial impacts could result from: (i) direct effects of indoxacarb, (ii) indirect effects of antimicrobial preservatives included in the selecting bait matrix, or (iii) selection for general stress response mechanisms that confer both xenobiotic resistance and immunity. These results provide novel physiological insights into insecticide resistance evolution and mechanisms, as well as novel insights into parallel fitness benefits associated with selection for insecticide resistance.

14.
BMC Genomics ; 21(1): 888, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308144

RESUMO

BACKGROUND: Voice disorders are a worldwide problem impacting human health, particularly for occupational voice users. Avoidance of surface dehydration is commonly prescribed as a protective factor against the development of dysphonia. The available literature inconclusively supports this practice and a biological mechanism for how surface dehydration of the laryngeal tissue affects voice has not been described. In this study, we used an in vivo male New Zealand white rabbit model to elucidate biological changes based on gene expression within the vocal folds from surface dehydration. Surface dehydration was induced by exposure to low humidity air (18.6% + 4.3%) for 8 h. Exposure to moderate humidity (43.0% + 4.3%) served as the control condition. Ilumina-based RNA sequencing was performed and used for transcriptome analysis with validation by RT-qPCR. RESULTS: There were 103 statistically significant differentially expressed genes identified through Cuffdiff with 61 genes meeting significance by both false discovery rate and fold change. Functional annotation enrichment and predicted protein interaction mapping showed enrichment of various loci, including cellular stress and inflammatory response, ciliary function, and keratinocyte development. Eight genes were selected for RT-qPCR validation. Matrix metalloproteinase 12 (MMP12) and macrophage cationic peptide 1 (MCP1) were significantly upregulated and an epithelial chloride channel protein (ECCP) was significantly downregulated after surface dehydration by RNA-Seq and RT-qPCR. Suprabasin (SPBN) and zinc activated cationic channel (ZACN) were marginally, but non-significantly down- and upregulated as evidenced by RT-qPCR, respectively. CONCLUSIONS: The data together support the notion that surface dehydration induces physiological changes in the vocal folds and justifies targeted analysis to further explore the underlying biology of compensatory fluid/ion flux and inflammatory mediators in response to airway surface dehydration.


Assuntos
Laringe , Animais , Perfilação da Expressão Gênica , Umidade , Masculino , Coelhos , Análise de Sequência de RNA , Prega Vocal
15.
Sci Rep ; 10(1): 13685, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792547

RESUMO

Fungal endophytes can influence production and post-harvest challenges in carrot, though the identity of these microbes as well as factors affecting their composition have not yet been determined, which prevents growers from managing these organisms to improve crop performance. Consequently, we characterized the endophytic mycobiome in the taproots of three carrot genotypes that vary in resistance to two pathogens grown in a trial comparing organic and conventional crop management using Illumina sequencing of the internal transcribed spacer (ITS) gene. A total of 1,480 individual operational taxonomic units (OTUs) were identified. Most were consistent across samples, indicating that they are part of a core mycobiome, though crop management influenced richness and diversity, likely in response to differences in soil properties. There were also differences in individual OTUs among genotypes and the nematode resistant genotype was most responsive to management system indicating that it has greater control over its endophytic mycobiome, which could potentially play a role in resistance. Members of the Ascomycota were most dominant, though the exact function of most taxa remains unclear. Future studies aimed at overcoming difficulties associated with isolating fungal endophytes are needed to identify these microbes at the species level and elucidate their specific functional roles.


Assuntos
Daucus carota/crescimento & desenvolvimento , Fungos/classificação , Análise de Sequência de DNA/métodos , Agricultura , Daucus carota/genética , Daucus carota/microbiologia , Endófitos , Fungos/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Micobioma , Filogenia , Raízes de Plantas/microbiologia
16.
J Biomol Tech ; 31(2): 66-73, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382253

RESUMO

Over the last decade, the cost of -omics data creation has decreased 10-fold, whereas the need for analytical support for those data has increased exponentially. Consequently, bioinformaticians face a second wave of challenges: novel applications of existing approaches (e.g., single-cell RNA sequencing), integration of -omics data sets of differing size and scale (e.g., spatial transcriptomics), as well as novel computational and statistical methods, all of which require more sophisticated pipelines and data management. Nonetheless, bioinformatics cores are often asked to operate under primarily a cost-recovery model, with limited institutional support. Seeing the need to assess bioinformatics core operations, the Association of Biomolecular Resource Facilities Genomics Bioinformatics Research Group conducted a survey to answer questions about staffing, services, financial models, and challenges to better understand the challenges bioinformatics core facilities are currently faced with and will need to address going forward. Of the respondent groups, we chose to focus on the survey data from smaller cores, which made up the majority. Although all cores indicated similar challenges in terms of changing technologies and analysis needs, small cores tended to have the added challenge of funding their operations largely through cost-recovery models with heavy administrative burdens.


Assuntos
Pesquisa Biomédica/normas , Biologia Computacional/normas , Genômica/normas , Humanos , Análise de Célula Única/normas
17.
J Exp Bot ; 71(12): 3701-3709, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32161961

RESUMO

The perception pathway for endogenous auxin has been well described, yet the mode of action of synthetic auxin herbicides, used for >70 years, remains uncharacterized. We utilized transcriptomics and targeted physiological studies to investigate the unknown rapid response to synthetic auxin herbicides in the globally problematic weed species Erigeron canadensis. Synthetic auxin herbicide application consistently and rapidly down-regulated the photosynthetic machinery. At the same time, there was considerable perturbation to the expression of many genes related to phytohormone metabolism and perception. In particular, auxin herbicide application enhanced the expression of the key abscisic acid biosynthetic gene, 9-cis-epoxycarotenoid deoxygenase (NCED). The increase in NCED expression following auxin herbicide application led to a rapid biosynthesis of abscisic acid (ABA). This increase in ABA levels was independent of a loss of cell turgor or an increase in ethylene levels, both proposed triggers for rapid ABA biosynthesis. The levels of ABA in the leaf after auxin herbicide application continued to increase as plants approached death, up to >3-fold higher than in the leaves of plants that were drought stressed. We propose a new model in which synthetic auxin herbicides trigger plant death by the whole-scale, rapid, down-regulation of photosynthetic processes and an increase in ABA levels through up-regulation of NCED expression, independent of ethylene levels or a loss of cell turgor.


Assuntos
Erigeron , Herbicidas , Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Herbicidas/farmacologia , Ácidos Indolacéticos , Transcriptoma
18.
PLoS Comput Biol ; 16(3): e1007531, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214318

RESUMO

Life scientists are increasingly turning to high-throughput sequencing technologies in their research programs, owing to the enormous potential of these methods. In a parallel manner, the number of core facilities that provide bioinformatics support are also increasing. Notably, the generation of complex large datasets has necessitated the development of bioinformatics support core facilities that aid laboratory scientists with cost-effective and efficient data management, analysis, and interpretation. In this article, we address the challenges-related to communication, good laboratory practice, and data handling-that may be encountered in core support facilities when providing bioinformatics support, drawing on our own experiences working as support bioinformaticians on multidisciplinary research projects. Most importantly, the article proposes a list of guidelines that outline how these challenges can be preemptively avoided and effectively managed to increase the value of outputs to the end user, covering the entire research project lifecycle, including experimental design, data analysis, and management (i.e., sharing and storage). In addition, we highlight the importance of clear and transparent communication, comprehensive preparation, appropriate handling of samples and data using monitoring systems, and the employment of appropriate tools and standard operating procedures to provide effective bioinformatics support.


Assuntos
Biologia Computacional/economia , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pesquisa Biomédica/economia , Pesquisa Biomédica/métodos , Comunicação , Biologia Computacional/normas , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Projetos de Pesquisa/normas
19.
J Biomol Tech ; 31(2): 47-56, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31966025

RESUMO

Small RNAs (smRNAs) are important regulators of many biologic processes and are now most frequently characterized using Illumina sequencing. However, although standard RNA sequencing library preparation has become routine in most sequencing facilities, smRNA sequencing library preparation has historically been challenging because of high input requirements, laborious protocols involving gel purifications, inability to automate, and a lack of benchmarking standards. Additionally, studies have suggested that many of these methods are nonlinear and do not accurately reflect the amounts of smRNAs in vivo. Recently, a number of new kits have become available that permit lower input amounts and less laborious, gel-free protocol options. Several of these new kits claim to reduce RNA ligase-dependent sequence bias through novel adapter modifications and to lessen adapter-dimer contamination in the resulting libraries. With the increasing number of smRNA kits available, understanding the relative strengths of each method is crucial for appropriate experimental design. In this study, we systematically compared 9 commercially available smRNA library preparation kits as well as NanoString probe hybridization across multiple study sites. Although several of the new methodologies do reduce the amount of artificially over- and underrepresented microRNAs (miRNAs), we observed that none of the methods was able to remove all of the bias in the library preparation. Identical samples prepared with different methods show highly varied levels of different miRNAs. Even so, many methods excelled in ease of use, lower input requirement, fraction of usable reads, and reproducibility across sites. These differences may help users select the most appropriate methods for their specific question of interest.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/normas , MicroRNAs/genética , Análise de Sequência de RNA/normas , MicroRNAs/isolamento & purificação , Reprodutibilidade dos Testes , Software
20.
BMC Genomics ; 20(1): 785, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664907

RESUMO

BACKGROUND: The cellular machinery for cell wall synthesis and metabolism is encoded by members of large multi-gene families. Maize is both a genetic model for grass species and a potential source of lignocellulosic biomass from crop residues. Genetic improvement of maize for its utility as a bioenergy feedstock depends on identification of the specific gene family members expressed during secondary wall development in stems. RESULTS: High-throughput sequencing of transcripts expressed in developing rind tissues of stem internodes provided a comprehensive inventory of cell wall-related genes in maize (Zea mays, cultivar B73). Of 1239 of these genes, 854 were expressed among the internodes at ≥95 reads per 20 M, and 693 of them at ≥500 reads per 20 M. Grasses have cell wall compositions distinct from non-commelinid species; only one-quarter of maize cell wall-related genes expressed in stems were putatively orthologous with those of the eudicot Arabidopsis. Using a slope-metric algorithm, five distinct patterns for sub-sets of co-expressed genes were defined across a time course of stem development. For the subset of genes associated with secondary wall formation, fifteen sequence motifs were found in promoter regions. The same members of gene families were often expressed in two maize inbreds, B73 and Mo17, but levels of gene expression between them varied, with 30% of all genes exhibiting at least a 5-fold difference at any stage. Although presence-absence and copy-number variation might account for much of these differences, fold-changes of expression of a CADa and a FLA11 gene were attributed to polymorphisms in promoter response elements. CONCLUSIONS: Large genetic variation in maize as a species precludes the extrapolation of cell wall-related gene expression networks even from one common inbred line to another. Elucidation of genotype-specific expression patterns and their regulatory controls will be needed for association panels of inbreds and landraces to fully exploit genetic variation in maize and other bioenergy grass species.


Assuntos
Parede Celular/genética , Caules de Planta/genética , Transcriptoma , Zea mays/genética , Arabidopsis/genética , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/biossíntese , Lignina/biossíntese , Família Multigênica , Melhoramento Vegetal , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Regiões Promotoras Genéticas , Xilanos/biossíntese , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...