Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycobiology ; 52(2): 117-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690034

RESUMO

There is increasing evidence that holocarpic oomycetes, i.e., those converting their entire vegetative thallus into zoospores upon maturation, are a phylogenetically diverse group in both freshwater and marine ecosystems. Most of the known holocarpic oomycete species diverge before the main split of Peronosporomycetes and Saprolegniomycetes and are, thus, termed as early-diverging oomycetes. In environmental sequencing studies, it was revealed that of the early-diverging genera especially Sirolpidium, Miracula, and Diatomophthora are widespread. As in these studies especially the Arctic Ocean seemed to harbor many undiscovered species, sampling was conducted at the Blávík research station on Fáskrúðsfjörður in the East Fjords of Iceland, where there is both an influence from the Arctic Ocean and the North Atlantic. During the screening for infected diatoms, a parasitoid was found in the marine diatom genus Melosira, which is one of the most abundant genera in arctic ecosystems. Molecular phylogenetics and morphological characterization revealed that the parasitoid belonged to the genus Miracula and corresponded to one of the lineages previously found in single-cell sequencing. Thus, the current study both contributes to the knowledge of the genus Miracula and the increasing diversity of the genus suggests that the many linages found in environmental sequencing which can still not be associated with known species might represent actual species to be discovered in future studies.

2.
Environ Microbiol ; 25(10): 1830-1846, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37171093

RESUMO

The wild relatives of modern tomato crops are native to South America. These plants occur in habitats as different as the Andes and the Atacama Desert and are, to some degree, all susceptible to fungal pathogens of the genus Alternaria. Alternaria is a large genus. On tomatoes, several species cause early blight, leaf spots and other diseases. We collected Alternaria-like infection lesions from the leaves of eight wild tomato species from Chile and Peru. Using molecular barcoding markers, we characterized the pathogens. The infection lesions were caused predominantly by small-spored species of Alternaria of the section Alternaria, like A. alternata, but also by Stemphylium spp., Alternaria spp. from the section Ulocladioides and other related species. Morphological observations and an infection assay confirmed this. Comparative genetic diversity analyses show a larger diversity in this wild system than in studies of cultivated Solanum species. As A. alternata has been reported to be an increasing problem in cultivated tomatoes, investigating the evolutionary potential of this pathogen is not only interesting to scientists studying wild plant pathosystems. It could also inform crop protection and breeding programs to be aware of potential epidemics caused by species still confined to South America.


Assuntos
Solanum lycopersicum , Solanum , Alternaria/genética , Produtos Agrícolas , Chile
3.
BMC Genomics ; 24(1): 140, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944935

RESUMO

Downy mildew disease of sunflower, caused by the obligate biotrophic oomycete Plasmopara halstedii, can have significant economic impact on sunflower cultivation. Using high-throughput whole transcriptome sequencing, four developmental phases in 16 time-points of Pl. halstedii infecting Helianthus annuus were investigated. With the aim of identifying potential functional and regulatory motifs upstream of co-expressed genes, time-series derived gene expression profiles were clustered based on their time-course similarity, and their upstream regulatory gene sequences were analyzed here. Several conserved motifs were found upstream of co-expressed genes, which might be involved in binding specific transcription factors. Such motifs were also found associated with virulence related genes, and could be studied on a genetically tractable model to clarify, if these are involved in regulating different stages of pathogenesis.


Assuntos
Helianthus , Oomicetos , Peronospora , Helianthus/genética , Fatores de Tempo , Oomicetos/genética , Sequência Conservada , Doenças das Plantas/genética
4.
Lancet Planet Health ; 7(2): e155-e163, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36754471

RESUMO

Medicinal plants and their bioactive molecules are integral components of nature and have supported the health of human societies for millennia. However, the prevailing view of medicinal biodiversity solely as an ecosystem-decoupled natural resource of commercial value prevents people from fully benefiting from the capacity of nature to provide medicines and from assessing the vulnerability of this capacity to the global environmental crisis. Emerging scientific and technological developments and traditional knowledge allow for appreciating medicinal plant resources from a planetary health perspective. In this Personal View, we highlight and integrate current knowledge that includes medicinal, biodiversity, and environmental change research in a transdisciplinary framework to evaluate natural medicinal resources and their vulnerability in the anthropocene. With Europe as an application case, we propose proxy spatial indicators for establishing the capacity, potential societal benefits, and economic values of native medicinal plant resources and the exposure of these resources to global environmental change. The proposed framework and indicators aim to be a basis for transdisciplinary research on medicinal biodiversity and could guide decisions in addressing crucial multiple Sustainable Development Goals, from accessible global health care to natural habitat protection and restoration.


Assuntos
Ecossistema , Plantas Medicinais , Humanos , Conservação dos Recursos Naturais , Biodiversidade , Recursos Naturais
5.
J Eukaryot Microbiol ; 70(2): e12957, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36447377

RESUMO

Holocarpic oomycetes have been neglected over several decades, until interest in these organisms has recently resurged. One of the most widespread genera of holocarpic oomycetes is Pontisma, parasitic to red seaweeds throughout all oceans. Recently, the genus Sirolpidium (parasitic to green algae) was found to be congeneric with Pontisma. This hinted at a high pathogenic versatility and prompted the screening of other macroalgae on the coastline of Iceland. During this survey a parasite of the brown algae Pylaiella littoralis was found, which formed anisolpidium-like thalli, but produced biflagellate zoospores. Phylogenetic investigations revealed that the parasite was placed in the genus Pontisma. In reconstructions based on partial nrSSU sequences, it grouped with some sequences of parasitoids of the diatom genus Licmophora, but the more variable mitochondrial cox2 sequences were divergent. Based on phylogenetic evidence and the unique parasitism of brown algae, the parasitoid is described as Pontisma blauvikense in this study. Pontisma blauvikense is the fourth oomycete species parasitic to Pylaiella, which is also parasitised by Euychasma dicksonii and two Anisolpidium species. For a better understanding of the ecology and evolution of holocarpic oomycetes, further research is necessary to investigate the host spectrum of Pontisma in general and Pontisma blauvikense in particular.


Assuntos
Diatomáceas , Oomicetos , Phaeophyceae , Filogenia , Phaeophyceae/parasitologia
6.
mSystems ; 7(3): e0030422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35695510

RESUMO

Nonmycorrhizal root-colonizing fungi are key determinants of plant growth, driving processes ranging from pathogenesis to stress alleviation. Evidence suggests that they might also facilitate host access to soil nutrients in a mycorrhiza-like manner, but the extent of their direct contribution to plant nutrition is unknown. To study how widespread such capacity is across root-colonizing fungi, we surveyed soils in nutrient-limiting habitats using plant baits to look for fungal community changes in response to nutrient conditions. We established a fungal culture collection and used Arabidopsis thaliana inoculation bioassays to assess the ability of fungi to facilitate host's growth in the presence of organic nutrients unavailable to plants. Plant baits captured a representation of fungal communities extant in natural habitats and showed that nutrient limitation has little influence on community assembly. Arabidopsis thaliana inoculated with 31 phylogenetically diverse fungi exhibited a consistent fungus-driven growth promotion when supplied with organic nutrients compared to untreated plants. However, direct phosphorus measurement and RNA-seq data did not support enhanced nutrient uptake but rather that growth effects may result from changes in the plant's immune response to colonization. The widespread and consistent host responses to fungal colonization suggest that distinct, locally adapted nonmycorrhizal fungi affect plant performance across habitats. IMPORTANCE Recent studies have shown that root-associated fungi that do not engage in classical mycorrhizal associations can facilitate the hosts' access to nutrients in a mycorrhiza-like manner. However, the generality of this capacity remains to be tested. Root-associated fungi are frequently deemed major determinants of plant diversity and performance, but in the vast majority of cases their ecological roles in nature remain unknown. Assessing how these plant symbionts affect plant productivity, diversity, and fitness is important to understanding how plant communities function. Recent years have seen important advances in the understanding of the main drivers of the diversity and structure of plant microbiomes, but a major challenge is still linking community properties with function. This study contributes to the understanding of the cryptic function of root-associated fungi by testing their ability to participate in a specific process: nutrient acquisition by plants.


Assuntos
Arabidopsis , Microbiota , Micorrizas , Raízes de Plantas , Simbiose , Micorrizas/fisiologia , Plantas , Nutrientes
7.
IMA Fungus ; 13(1): 11, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672841

RESUMO

Tilletia caries and T. laevis, which are the causal agents of common bunt, as well as T. controversa, which causes dwarf bunt of wheat, threaten especially organic wheat farming. The three closely related fungal species differ in their teliospore morphology and partially in their physiology and infection biology. The gene content as well as intraspecies variation in these species and the genetic basis of their separation is unknown. We sequenced the genome of four T. caries, five T. controversa, and two T. laevis and extended this dataset with five publicly available ones. The genomes of the three species displayed microsynteny with up to 94.3% pairwise aligned regions excluding repetitive regions. The majority of functionally characterized genes involved in pathogenicity, life cycle, and infection of corn smut, Ustilago maydis, were found to be absent or poorly conserved in the draft genomes and the biosynthetic pathway for trimethylamine in Tilletia spp. could be different from bacteria. Overall, 75% of the identified protein-coding genes comprising 84% of the total predicted carbohydrate utilizing enzymes, 72.5% putatively secreted proteins, and 47.4% of effector-like proteins were conserved and shared across all 16 isolates. We predicted nine highly identical secondary metabolite biosynthesis gene clusters comprising in total 62 genes in all species and none were species-specific. Less than 0.1% of the protein-coding genes were species-specific and their function remained mostly unknown. Tilletia controversa had the highest intraspecies genetic variation, followed by T. caries and the lowest in T. laevis. Although the genomes of the three species are very similar, employing 241 single copy genes T. controversa was phylogenetically distinct from T. caries and T. laevis, however these two could not be resolved as individual monophyletic groups. This was in line with the genome-wide number of single nucleotide polymorphisms and small insertions and deletions. Despite the conspicuously different teliospore ornamentation of T. caries and T. laevis, a high degree of genomic identity and scarcity of species-specific genes indicate that the two species could be conspecific.

8.
Mycology ; 13(2): 153-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711327

RESUMO

Holocarpic oomycetes infecting freshwater diatoms are obligate endobiotic parasites reported from a wide range of habitats. So far, the taxonomy of and phylogeny of most species remains unresolved, since most have not been reported throughout the past decades and sequence data are available for only the four species, Aphanomycopsis bacillariacearum, Diatomophthora gillii, Ectrogella bacillariacearum, and the recently-discovered species Miracula moenusica. In the current study, a new freshwater diatom parasite resembling Ectrogella bacillariacearum in the sense of Scherffel was discovered from pennate diatoms (Ulnaria acus, Ulnaria ulna) collected from the small stream Einbúalækur on Víkurskarð, North Iceland and investigated for its life cycle and phylogenetic placement. In contrast to the original description, Scherffel reports an achlya-like spore discharge for Ectrogella bacillariacearum. The phylogenetic reconstruction and morphological characterisation in this study revealed that Scherffel's E. bacillariacearum is largely unrelated to the epitype of the species and is a member of the early-diverging genus Miracula. Consequently, the new species is described as M. einbuarlaekurica in the present study. This adds a second freshwater member to the genus, demonstrating the high ecological adaptability of the genus, which thrives in both freshwater and marine ecosystems.

9.
Mol Phylogenet Evol ; 166: 107321, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626809

RESUMO

Biotrophic plant parasites cause economically important diseases, e.g. downy mildew of grape, powdery mildew of legumes, wheat stripe rust, and wheat bunt. But also in natural ecosystems, these organisms are abundant and diverse, and for many hosts more than one specialised biotrophic pathogen is known. However, only a fraction of their diversity is thought to have been described. There is accumulating evidence for the importance of host jumping for the diversification of obligate biotrophic pathogens but tracing this process along the phylogeny of pathogens is often complicated by a lack of resolution of phylogenetic trees, low taxon and specimen sampling, or either too few or too many host jumps in the pathogen group in question. Here, a clade of Peronospora species mostly infecting members of the Ranunculales was investigated using multigene analyses and ancestral state reconstructions. These analyses show that this clade started out in Papaveraceae, with subsequent host jumps to Berberidaceae, Euphorbiaceae, and Ranunculaceae. In Ranunculaceae, radiation to a variety of hosts took place, and a new host jump occurred to Caryophyllaceae. This highlights that host jumping and subsequent radiation is a key evolutionary process driving the diversification of Peronospora. It seems likely that the observed pattern can be generalised to other obligate parasite lineages, as diverse hosts in unrelated families have also been reported for other pathogen groups, including powdery mildew, rust fungi, and smut fungi.


Assuntos
Parasitos , Peronospora , Animais , Ecossistema , Humanos , Peronospora/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
10.
Phytopathology ; 112(2): 422-434, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34058860

RESUMO

Peronospora tabacina is an obligate parasite that causes blue mold of tobacco. The pathogen reproduces primarily by sporangia, whereas the sexual oospores are rarely observed. A collection of 122 isolates of P. tabacina was genotyped using nine microsatellites to assess the population structure of individuals from subpopulations collected from central, southern, and western Europe; the Middle East; Central America; North America; and Australia. Genetic variations among the six subpopulations accounted for ∼8% of the total variation, including moderate levels of genetic differentiation, high gene flow among these subpopulations, and a positive correlation between geographic and genetic distance (r = 0.225; P < 0.001). Evidence of linkage disequilibrium (P < 0.001) showed that populations contained partially clonal subpopulations but that subpopulations from Australia and Mediterranean Europe did not. High genetic variation and population structure among samples could be explained by continuous gene flow across continents via infected transplant exchange and/or long-distance dispersal of sporangia via wind currents. This study analyzed the most numerous P. tabacina collection and allowed conclusions regarding the migration, mutation, and evolutionary history of this obligate biotrophic oomycete. The evidence pointed to the species origin in Australia and identified intracontinental and intercontinental migration patterns of this important pathogen.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Peronospora , Fluxo Gênico , Variação Genética , Repetições de Microssatélites/genética , Peronospora/genética , Doenças das Plantas/parasitologia , Nicotiana/genética
11.
Genes (Basel) ; 12(9)2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34573338

RESUMO

Growing amounts of genomic data and more efficient assembly tools advance organelle genomics at an unprecedented scale. Genomic resources are increasingly used for phylogenetic analyses of many plant species, but are less frequently used to investigate within-species variability and phylogeography. In this study, we investigated genetic diversity of Fagus sylvatica, an important broadleaved tree species of European forests, based on complete chloroplast genomes of 18 individuals sampled widely across the species distribution. Our results confirm the hypothesis of a low cpDNA diversity in European beech. The chloroplast genome size was remarkably stable (158,428 ± 37 bp). The polymorphic markers, 12 microsatellites (SSR), four SNPs and one indel, were found only in the single copy regions, while inverted repeat regions were monomorphic both in terms of length and sequence, suggesting highly efficient suppression of mutation. The within-individual analysis of polymorphisms showed >9k of markers which were proportionally present in gene and non-gene areas. However, an investigation of the frequency of alternate alleles revealed that the source of this diversity originated likely from nuclear-encoded plastome remnants (NUPTs). Phylogeographic and Mantel correlation analysis based on the complete chloroplast genomes exhibited clustering of individuals according to geographic distance in the first distance class, suggesting that the novel markers and in particular the cpSSRs could provide a more detailed picture of beech population structure in Central Europe.


Assuntos
Fagus/genética , Genoma de Cloroplastos/genética , Sequências Repetidas Invertidas , Sequência de Bases , Sequência Conservada , Europa (Continente) , Variação Genética , Tamanho do Genoma , Genômica/métodos , Repetições de Microssatélites , Filogenia , Polimorfismo de Nucleotídeo Único
12.
Mycobiology ; 49(4): 355-362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512079

RESUMO

Obligate endoparasitic oomycetes are known to ubiquitously occur in marine and freshwater diatoms, but their diversity is still largely unexplored. Many of these parasitoids are members of the early-diverging oomycete lineages (Miracula, Diatomophthora), others are within the Leptomitales of the Saprolegniomycetes (Ectrogella, Lagenisma) and some have been described in the Peronosporomycetes (Aphanomycopsis, Lagenidium). Even though some species have been recently described and two new genera were introduced (Miracula and Diatomophthora), the phylogeny and taxonomy of most of these organisms remain unresolved. This is contrasted by the high number of sequences from unclassified species, as recently revealed from environmental sequencing, suggesting the presence of several undiscovered species. In this study, a new species of Miracula is reported from a marine centric diatom (Minidiscus sp.) isolated from Skagaströnd harbor in Northwest Iceland. The morphology and life cycle traits of this novel oomycete parasite are described herein, and its taxonomic placement within the genus Miracula is confirmed by molecular phylogeny. As it cannot be assigned to any previously described species, it is introduced as Miracula islandica in this study. The genus Miracula thus contains three described holocarpic species (M. helgolandica, M. islandica, M. moenusica) to which likely additional species will need to be added in the future, considering the presence of several lineages known only from environmental sequencing that clustered within the Miracula clade.

13.
Front Microbiol ; 12: 686759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335513

RESUMO

Downy mildews caused by obligate biotrophic oomycetes result in severe crop losses worldwide. Among these pathogens, Pseudoperonospora cubensis and P. humuli, two closely related oomycetes, adversely affect cucurbits and hop, respectively. Discordant hypotheses concerning their taxonomic relationships have been proposed based on host-pathogen interactions and specificity evidence and gene sequences of a few individuals, but population genetics evidence supporting these scenarios is missing. Furthermore, nuclear and mitochondrial regions of both pathogens have been analyzed using microsatellites and phylogenetically informative molecular markers, but extensive comparative population genetics research has not been done. Here, we genotyped 138 current and historical herbarium specimens of those two taxa using microsatellites (SSRs). Our goals were to assess genetic diversity and spatial distribution, to infer the evolutionary history of P. cubensis and P. humuli, and to visualize genome-scale organizational relationship between both pathogens. High genetic diversity, modest gene flow, and presence of population structure, particularly in P. cubensis, were observed. When tested for cross-amplification, 20 out of 27 P. cubensis-derived gSSRs cross-amplified DNA of P. humuli individuals, but few amplified DNA of downy mildew pathogens from related genera. Collectively, our analyses provided a definite argument for the hypothesis that both pathogens are distinct species, and suggested further speciation in the P. cubensis complex.

14.
New Phytol ; 232(2): 719-733, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270791

RESUMO

The constitution and regulation of effector repertoires shape host-microbe interactions. Ustilago maydis and Sporisorium reilianum are two closely related smut fungi, which both infect maize but cause distinct disease symptoms. Understanding how effector orthologs are regulated in these two pathogens can therefore provide insights into the evolution of different infection strategies. We tracked the infection progress of U. maydis and S. reilianum in maize leaves and used two distinct infection stages for cross-species RNA-sequencing analyses. We identified 207 of 335 one-to-one effector orthologs as differentially regulated during host colonization, which might reflect the distinct disease development strategies. Using CRISPR-Cas9-mediated gene conversion, we identified two differentially expressed effector orthologs with conserved function between two pathogens. Thus, differential expression of functionally conserved genes might contribute to species-specific adaptation and symptom development. Interestingly, another differentially expressed orthogroup (UMAG_05318/Sr10075) showed divergent protein function, providing a possible case for neofunctionalization. Collectively, we demonstrated that the diversification of effector genes in related pathogens can be caused both by alteration on the transcriptional level and through functional diversification of the encoded effector proteins.


Assuntos
Ustilago , Zea mays , Basidiomycota , Doenças das Plantas , Ustilago/genética , Virulência/genética , Zea mays/genética
15.
Elife ; 102021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132196

RESUMO

In the course of global climate change, Central Europe is experiencing more frequent and prolonged periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) differently: even in the same stand, drought-damaged trees neighboured healthy trees, suggesting that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. Contrasting the extreme phenotypes identified 106 significantly associated single-nucleotide polymorphisms (SNPs) throughout the genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid exchange or premature termination. An SNP assay with 70 loci allowed predicting drought phenotype in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately polygenic trait that should respond well to natural selection, selective management, and breeding.


Climate change is having a serious impact on many ecosystems. In the summer of 2018 and 2019, around two thirds of European beech trees were damaged or killed by extreme drought. It is critical to keep these beech woods healthy, as they are central to the survival of over 6,000 other species of animals and plants. The level of damage caused by the drought varied between forests. However, not all the trees in each forest responded in the same way, with severely damaged trees often sitting next to fully healthy ones. This suggests that the genetic make-up of each tree determines how well it can adapt to drought rather than its local environment. To investigate this further, Pfenninger et al. studied the genome of over 400 European beech trees from the Hesse region in Germany. The samples came from pairs of neighbouring trees that had responded differently to the droughts. The analysis found more than 80 parts of the genome that differed between healthy and damaged trees. Pfenninger et al. then used this information to create a genetic test which can quickly and inexpensively predict how well an individual beech tree might survive in a drought. Applying this test to another 92 trees revealed that it can reliably detect which ones were healthy and which ones were damaged. Beech forests are typically managed by private owners, agencies or breeders that could use this genetic test to select and reproduce trees that are better adapted to drought. The goal now is to develop the test so that it can be used more widely to manage European beech trees and potentially other species.


Assuntos
Aclimatação/genética , Secas , Fagus/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
17.
IMA Fungus ; 12(1): 11, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33934723

RESUMO

It is now a decade since The International Commission on the Taxonomy of Fungi (ICTF) produced an overview of requirements and best practices for describing a new fungal species. In the meantime the International Code of Nomenclature for algae, fungi, and plants (ICNafp) has changed from its former name (the International Code of Botanical Nomenclature) and introduced new formal requirements for valid publication of species scientific names, including the separation of provisions specific to Fungi and organisms treated as fungi in a new Chapter F. Equally transformative have been changes in the data collection, data dissemination, and analytical tools available to mycologists. This paper provides an updated and expanded discussion of current publication requirements along with best practices for the description of new fungal species and publication of new names and for improving accessibility of their associated metadata that have developed over the last 10 years. Additionally, we provide: (1) model papers for different fungal groups and circumstances; (2) a checklist to simplify meeting (i) the requirements of the ICNafp to ensure the effective, valid and legitimate publication of names of new taxa, and (ii) minimally accepted standards for description; and, (3) templates for preparing standardized species descriptions.

18.
Nat Microbiol ; 6(5): 540-548, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33903746

RESUMO

The identification and proper naming of microfungi, in particular plant, animal and human pathogens, remains challenging. Molecular identification is becoming the default approach for many fungal groups, and environmental metabarcoding is contributing an increasing amount of sequence data documenting fungal diversity on a global scale. This includes lineages represented only by sequence data. At present, these taxa cannot be formally described under the current nomenclature rules. By considering approaches used in bacterial taxonomy, we propose solutions for the nomenclature of taxa known only from sequences to facilitate consistent reporting and communication in the literature and public sequence repositories.


Assuntos
Fungos/classificação , Fungos/isolamento & purificação , Animais , DNA Fúngico/genética , Microbiologia Ambiental , Fungos/genética , Humanos , Micoses/microbiologia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Terminologia como Assunto
19.
Mycologia ; 113(3): 643-652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33734033

RESUMO

Plantago princeps var. princeps is an endangered native Hawaiian plant, and part of the recovery plan includes repopulation using plants grown in a nursery. However, disease pressure from downy mildew is hindering repopulation efforts. The organism associated with the downy mildew was determined to be a Peronospora species with brown, ellipsoid conidia measuring 21 by 16 µm on average, which was morphologically different from validly described species of Peronospora that infect Plantago species, but it was morphologically similar to the invalidly published species Peronospora lanceolatae (Art. 40.1). Comparison of mitochondrial cytochrome oxidase subunit I (cox1), mitochondrial cytochrome oxidase subunit II (cox2), nuclear internal transcribed spacer (ITS), and nuclear 28S rRNA D1-D2 (28S) loci revealed the unknown Peronospora to be molecularly divergent from Peronospora alta and Peronsopora plantaginis, but very similar to Peronospora from Plantago lanceolata, the type host of P. lanceolatae. Phylogenetic trees inferred with maximum likelihood and Bayesian inference from a concatenated alignmaent and individual gene trees confirmed the divergence of the unknown Peronospora from P. alta and P. plantaginis and its similarity to P. lanceolatae. However, attempts to inoculate Plantago lanceolata with the strain from Plantago princeps var. princeps were unsuccessful, which, in conjunction with divergence in ITS, suggests that the unknown Peronospora is specific to Plantago princeps var. princeps. Herein, the Peronospora strain on Plantago princeps var. princeps is described as the new species Peronospora kuewa based on morphology, molecular phylogenetics, and host specificity. In addition, Peronospora gaponenkoae is described here to honor Nina Ivanova Gaponenko on the basis of her description of P. lanceolatae.


Assuntos
Peronospora , Plantago , Teorema de Bayes , DNA Espaçador Ribossômico/genética , Havaí , Peronospora/genética , Filogenia , Doenças das Plantas
20.
Plant J ; 106(3): 733-752, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33570802

RESUMO

The biotrophic pathogen Ustilago maydis causes smut disease on maize (Zea mays) and induces the formation of tumours on all aerial parts of the plant. Unlike in other biotrophic interactions, no gene-for-gene interactions have been identified in the maize-U. maydis pathosystem. Thus, maize resistance to U. maydis is considered a polygenic, quantitative trait. Here, we study the molecular mechanisms of quantitative disease resistance (QDR) in maize, and how U. maydis interferes with its components. Based on quantitative scoring of disease symptoms in 26 maize lines, we performed an RNA sequencing (RNA-Seq) analysis of six U. maydis-infected maize lines of highly distinct resistance levels. The different maize lines showed specific responses of diverse cellular processes to U. maydis infection. For U. maydis, our analysis identified 406 genes being differentially expressed between maize lines, of which 102 encode predicted effector proteins. Based on this analysis, we generated U. maydis CRISPR/Cas9 knock-out mutants for selected candidate effector sets. After infections of different maize lines with the fungal mutants, RNA-Seq analysis identified effectors with quantitative, maize line-specific virulence functions, and revealed auxin-related processes as a possible target for one of them. Thus, we show that both transcriptional activity and virulence function of fungal effector genes are modified according to the infected maize line, providing insights into the molecular mechanisms underlying QDR in the maize-U. maydis interaction.


Assuntos
Basidiomycota/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Basidiomycota/genética , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Resistência à Doença , Edição de Genes , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Transcriptoma/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...