Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Diabetes ; 72(11): 1629-1640, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625150

RESUMO

Costimulation serves as a critical checkpoint for T-cell activation, and several genetic variants affecting costimulatory pathways confer risk for autoimmune diseases. A single nucleotide polymorphism (rs763361) in the CD226 gene encoding a costimulatory receptor increases susceptibility to multiple autoimmune diseases, including type 1 diabetes. We previously found that Cd226 knockout protected NOD mice from disease, but the impact of CD226 on individual immune subsets remained unclear. Our prior reports implicate regulatory T cells (Tregs), as human CD226+ Tregs exhibit reduced suppressive function. Hence, we hypothesized that genomic Cd226 gene deletion would increase Treg stability and that Treg-specific Cd226 deletion would inhibit diabetes in NOD mice. Indeed, crossing NOD.Cd226-/- and a NOD Treg-lineage tracing strain resulted in decreased pancreatic Foxp3-deficient "ex-Tregs." We generated a novel Treg-conditional knockout (TregΔCd226) strain that displayed decreased insulitis and diabetes incidence. CD226-deficient pancreatic Tregs had increased expression of the coinhibitory counter-receptor T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT). Moreover, NOD splenocytes treated with TIGIT-Fc fusion protein exhibited reduced T-cell proliferation and interferon-γ production following anti-CD3/CD28 stimulation. This study demonstrates that a CD226/TIGIT imbalance contributes to Treg instability in NOD mice and highlights the potential for therapeutic targeting this costimulatory pathway to halt autoimmunity.

2.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498686

RESUMO

The proportions and phenotypes of immune cell subsets in peripheral blood undergo continual and dramatic remodeling throughout the human life span, which complicates efforts to identify disease-associated immune signatures in type 1 diabetes (T1D). We conducted cross-sectional flow cytometric immune profiling on peripheral blood from 826 individuals (stage 3 T1D, their first-degree relatives, those with ≥2 islet autoantibodies, and autoantibody-negative unaffected controls). We constructed an immune age predictive model in unaffected participants and observed accelerated immune aging in T1D. We used generalized additive models for location, shape, and scale to obtain age-corrected data for flow cytometry and complete blood count readouts, which can be visualized in our interactive portal (ImmScape); 46 parameters were significantly associated with age only, 25 with T1D only, and 23 with both age and T1D. Phenotypes associated with accelerated immunological aging in T1D included increased CXCR3+ and programmed cell death 1-positive (PD-1+) frequencies in naive and memory T cell subsets, despite reduced PD-1 expression levels on memory T cells. Phenotypes associated with T1D after age correction were predictive of T1D status. Our findings demonstrate advanced immune aging in T1D and highlight disease-associated phenotypes for biomarker monitoring and therapeutic interventions.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Lactente , Estudos Transversais , Receptor de Morte Celular Programada 1 , Autoanticorpos , Envelhecimento
3.
Nat Commun ; 12(1): 5271, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489470

RESUMO

Chimeric antigen receptor (CAR) T cells have emerged as a promising class of therapeutic agents, generating remarkable responses in the clinic for a subset of human cancers. One major challenge precluding the wider implementation of CAR therapy is the paucity of tumor-specific antigens. Here, we describe the development of a CAR targeting the tumor-specific isocitrate dehydrogenase 2 (IDH2) with R140Q mutation presented on the cell surface in complex with a common human leukocyte antigen allele, HLA-B*07:02. Engineering of the hinge domain of the CAR, as well as crystal structure-guided optimization of the IDH2R140Q-HLA-B*07:02-targeting moiety, enhances the sensitivity and specificity of CARs to enable targeting of this HLA-restricted neoantigen. This approach thus holds promise for the development and optimization of immunotherapies specific to other cancer driver mutations that are difficult to target by conventional means.


Assuntos
Antígeno HLA-B7/química , Isocitrato Desidrogenase/metabolismo , Engenharia de Proteínas/métodos , Receptores de Antígenos Quiméricos/química , Animais , Antígenos de Neoplasias/metabolismo , Células COS , Linhagem Celular , Chlorocebus aethiops , Epitopos , Antígeno HLA-B7/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/imunologia , Mutação , Biblioteca de Peptídeos , Conformação Proteica , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/fisiologia
4.
Cell ; 184(3): 827-839.e14, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545036

RESUMO

Ahmed and colleagues recently described a novel hybrid lymphocyte expressing both a B and T cell receptor, termed double expresser (DE) cells. DE cells in blood of type 1 diabetes (T1D) subjects were present at increased numbers and enriched for a public B cell clonotype. Here, we attempted to reproduce these findings. While we could identify DE cells by flow cytometry, we found no association between DE cell frequency and T1D status. We were unable to identify the reported public B cell clone, or any similar clone, in bulk B cells or sorted DE cells from T1D subjects or controls. We also did not observe increased usage of the public clone VH or DH genes in B cells or in sorted DE cells. Taken together, our findings suggest that DE cells and their alleged public clonotype are not enriched in T1D. This Matters Arising paper is in response to Ahmed et al. (2019), published in Cell. See also the response by Ahmed et al. (2021), published in this issue.


Assuntos
Diabetes Mellitus Tipo 1 , Linfócitos B , Células Clonais , Diabetes Mellitus Tipo 1/genética , Citometria de Fluxo , Humanos , Receptores de Antígenos de Linfócitos T
5.
Immunol Cell Biol ; 99(5): 496-508, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33483996

RESUMO

The conceptual basis for a genetic predisposition underlying the risk for developing type 1 diabetes (T1D) predates modern human molecular genetics. Over half of the genetic risk has been attributed to the human leukocyte antigen (HLA) class II gene region and to the insulin (INS) gene locus - both thought to confer direction of autoreactivity and tissue specificity. Notwithstanding, questions still remain regarding the functional contributions of a vast array of minor polygenic risk variants scattered throughout the genome that likely influence disease heterogeneity and clinical outcomes. Herein, we summarize the available literature related to the T1D-associated coding variants defined at the time of this review, for the genes PTPN22, IFIH1, SH2B3, CD226, TYK2, FUT2, SIRPG, CTLA4, CTSH and UBASH3A. Data from genotype-selected human cohorts are summarized, and studies from the non-obese diabetic (NOD) mouse are presented to describe the functional impact of these variants in relation to innate and adaptive immunity as well as to ß-cell fragility, with expression profiles in tissues and peripheral blood highlighted. The contribution of each variant to progression through T1D staging, including environmental interactions, are discussed with consideration of how their respective protein products may serve as attractive targets for precision medicine-based therapeutics to prevent or suspend the development of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Genótipo , Camundongos , Camundongos Endogâmicos NOD , Polimorfismo de Nucleotídeo Único
6.
Sci Rep ; 9(1): 5940, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976021

RESUMO

ADP-ribosylation is a post-translational modification that occurs on chemically diverse amino acids, including aspartate, glutamate, lysine, arginine, serine and cysteine on proteins and is mediated by ADP-ribosyltransferases, including a subset commonly known as poly(ADP-ribose) polymerases. ADP-ribose can be conjugated to proteins singly as a monomer or in polymeric chains as poly(ADP-ribose). While ADP-ribosylation can be reversed by ADP-ribosylhydrolases, this protein modification can also be processed to phosphoribosylation by enzymes possessing phosphodiesterase activity, such as snake venom phosphodiesterase, mammalian ectonucleotide pyrophosphatase/phosphodiesterase 1, Escherichia coli RppH, Legionella pneumophila Sde and Homo sapiens NudT16 (HsNudT16). Our studies here sought to utilize X-ray crystallographic structures of HsNudT16 in complex with monomeric and dimeric ADP-ribose in identifying the active site for binding and processing free and protein-conjugated ADP-ribose into phosphoribose forms. These structural data guide rational design of mutants that widen the active site to better accommodate protein-conjugated ADP-ribose. We identified that several HsNudT16 mutants (Δ17, F36A, and F61S) have reduced activity for free ADP-ribose, similar processing ability against protein-conjugated mono(ADP-ribose), but improved catalytic efficiency for protein-conjugated poly(ADP-ribose). These HsNudT16 variants may, therefore, provide a novel tool to investigate different forms of ADP-ribose.


Assuntos
Mutação , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Pirofosfatases/química , Pirofosfatases/metabolismo , ADP-Ribosilação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Poli Adenosina Difosfato Ribose/química , Poli(ADP-Ribose) Polimerases/genética , Conformação Proteica , Pirofosfatases/genética
7.
J Biol Chem ; 293(11): 4134-4148, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29378847

RESUMO

CoA is the major acyl carrier in mammals and a key cofactor in energy metabolism. Dynamic regulation of CoA in different tissues and organs supports metabolic flexibility. Two mammalian Nudix hydrolases, Nudt19 and Nudt7, degrade CoA in vitro Nudt19 and Nudt7 possess conserved Nudix and CoA signature sequences and specifically hydrolyze the diphosphate bond of free CoA and acyl-CoAs to form 3',5'-ADP and 4'-(acyl)phosphopantetheine. Limited information is available on these enzymes, but the relatively high abundance of Nudt19 and Nudt7 mRNA in the kidney and liver, respectively, suggests that they play specific roles in the regulation of CoA levels in these organs. Here, we analyzed Nudt19-/- mice and found that deletion of Nudt19 elevates kidney CoA levels in mice fed ad libitum, indicating that Nudt19 contributes to the regulation of CoA in vivo Unlike what was observed for the regulation of Nudt7 in the liver, Nudt19 transcript and protein levels in the kidney did not differ between fed and fasted states. Instead, we identified chenodeoxycholic acid as a specific Nudt19 inhibitor that competed with CoA for Nudt19 binding but did not bind to Nudt7. Exchange of the Nudix and CoA signature motifs between the two isoforms dramatically decreased their kcat Furthermore, substitutions of conserved residues within these motifs identified amino acids playing different roles in CoA binding and hydrolysis in Nudt19 and Nudt7. Our results reveal that the kidney and liver each possesses a distinct peroxisomal CoA diphosphohydrolase.


Assuntos
Coenzima A/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pirofosfatases/fisiologia , Sequência de Aminoácidos , Animais , Isoenzimas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação Proteica , Pirofosfatases/química , Homologia de Sequência , Nudix Hidrolases
8.
J Bioenerg Biomembr ; 48(6): 557-567, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27683242

RESUMO

Mycobacterium tuberculosis represents one of the world's most devastating infectious agents - with one third of the world's population infected and 1.5 million people dying each year from this deadly pathogen. As part of an effort to identify targets for therapeutic intervention, we carried out the kinetic characterization of the product of gene rv1700 of M. tuberculosis. Based on its sequence and its structure, the protein had been tentatively identified as a pyrophosphohydrolase specific for adenosine diphosphate ribose (ADPR), a compound involved in various pathways including oxidative stress response and tellurite resistance. In this work we carry out a kinetic, mutational and structural investigation of the enzyme, which provides a full characterization of this Mt-ADPRase. Optimal catalytic rates were achieved at alkaline pH (7.5-8.5) with either 0.5-1 mM Mg2+ or 0.02-1 mM Mn2+. K m and k cat values for hydrolysis of ADPR with Mg2+ ions are 200 ± 19 µM and 14.4 ± 0.4 s-1, and with Mn2+ ions are 554 ± 64 µM and 28.9 ± 1.4 s-1. Four residues proposed to be important in the catalytic mechanism of the enzyme were individually mutated and the kinetics of the mutant enzymes were characterized. In the four cases, the K m increased only slightly (2- to 3-fold) but the k cat decreased significantly (300- to 1900-fold), confirming the participation of these residues in catalysis. An analysis of the sequence and structure conservation patterns in Nudix ADPRases permits an unambiguous identification of members of the family and provides insight into residues involved in catalysis and their participation in substrate recognition in the Mt-ADPRase.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Mycobacterium tuberculosis/enzimologia , Pirofosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Hidrolases/metabolismo , Cinética , Mutação , Mycobacterium tuberculosis/genética , Pirofosfatases/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
9.
Sci Rep ; 5: 18271, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26669448

RESUMO

ADP-ribosylation refers to the transfer of the ADP-ribose group from NAD(+) to target proteins post-translationally, either attached singly as mono(ADP-ribose) (MAR) or in polymeric chains as poly(ADP-ribose) (PAR). Though ADP-ribosylation is therapeutically important, investigation of this protein modification has been limited by a lack of proteomic tools for site identification. Recent work has demonstrated the potential of a tag-based pipeline in which MAR/PAR is hydrolyzed down to phosphoribose, leaving a 212 Dalton tag at the modification site. While the pipeline has been proven effective by multiple groups, a barrier to application has become evident: the enzyme used to transform MAR/PAR into phosphoribose must be purified from the rattlesnake Crotalus adamanteus venom, which is contaminated with proteases detrimental for proteomic applications. Here, we outline the steps necessary to purify snake venom phosphodiesterase I (SVP) and describe two alternatives to SVP-the bacterial Nudix hydrolase EcRppH and human HsNudT16. Importantly, expression and purification schemes for these Nudix enzymes have already been proven, with high-quality yields easily attainable. We demonstrate their utility in identifying ADP-ribosylation sites on Poly(ADP-ribose) Polymerase 1 (PARP1) with mass spectrometry and discuss a structure-based rationale for this Nudix subclass in degrading protein-conjugated ADP-ribose, including both MAR and PAR.


Assuntos
Adenosina Difosfato Ribose/química , Proteínas de Bactérias/química , Venenos de Crotalídeos/química , Fosfodiesterase I/química , Pirofosfatases/química , Adenosina Difosfato Ribose/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Venenos de Crotalídeos/enzimologia , Humanos , Fosfodiesterase I/metabolismo , Proteômica , Pirofosfatases/metabolismo , Viperidae , Nudix Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...