Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0460622, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809033

RESUMO

Nontyphoidal salmonellosis is one of the most significant foodborne diseases in the United States and globally. There are no vaccines available for human use to prevent this disease, and only broad-spectrum antibiotics are available to treat complicated cases of the disease. However, antibiotic resistance is on the rise and new therapeutics are needed. We previously identified the Salmonella fraB gene, that mutation of causes attenuation of fitness in the murine gastrointestinal tract. The FraB gene product is encoded in an operon responsible for the uptake and utilization of fructose-asparagine (F-Asn), an Amadori product found in several human foods. Mutations in fraB cause an accumulation of the FraB substrate, 6-phosphofructose-aspartate (6-P-F-Asp), which is toxic to Salmonella. The F-Asn catabolic pathway is found only in the nontyphoidal Salmonella serovars, a few Citrobacter and Klebsiella isolates, and a few species of Clostridium; it is not found in humans. Thus, targeting FraB with novel antimicrobials is expected to be Salmonella specific, leaving the normal microbiota largely intact and having no effect on the host. We performed high-throughput screening (HTS) to identify small-molecule inhibitors of FraB using growth-based assays comparing a wild-type Salmonella and a Δfra island mutant control. We screened 224,009 compounds in duplicate. After hit triage and validation, we found three compounds that inhibit Salmonella in an fra-dependent manner, with 50% inhibitory concentration (IC50) values ranging from 89 to 150 µM. Testing these compounds with recombinant FraB and synthetic 6-P-F-Asp confirmed that they are uncompetitive inhibitors of FraB with Ki' (inhibitor constant) values ranging from 26 to 116 µM. IMPORTANCE Nontyphoidal salmonellosis is a serious threat in the United States and globally. We have recently identified an enzyme, FraB, that when mutated renders Salmonella growth defective in vitro and unfit in mouse models of gastroenteritis. FraB is quite rare in bacteria and is not found in humans or other animals. Here, we have identified small-molecule inhibitors of FraB that inhibit the growth of Salmonella. These could provide the foundation for a therapeutic to reduce the duration and severity of Salmonella infections.

2.
Glycobiology ; 33(2): 95-98, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36585843

RESUMO

During our biochemical characterization of select bacterial phosphatases belonging to the haloacid dehalogenase superfamily of hydrolases, we discovered a strong bias of Salmonella YidA for glucose-1-phosphate (Glc-1-P) over galactose-1-phosphate (Gal-1-P). We sought to exploit this ability of YidA to discriminate these two sugar-phosphate epimers in a simple coupled assay that could be a substitute for current cumbersome alternatives. To this end, we focused on Gal-1-P uridylyltransferase (GalT) that is defective in individuals with classical galactosemia, an inborn disorder. GalT catalyzes the conversion of Gal-1-P and UDP-glucose to Glc-1-P and UDP-galactose. When recombinant YidA was coupled to GalT, the final orthophosphate product (generated from selective hydrolysis of Glc-1-P by YidA) could be easily measured using the inexpensive malachite green reagent. When this new YidA-based colorimetric assay was benchmarked using a recombinant Duarte GalT variant, it yielded kcat/Km values that are ~2.5-fold higher than the standard coupled assay that employs phosphoglucomutase and glucose-6-phosphate dehydrogenase. Although the simpler design of our new GalT coupled assay might find appeal in diagnostics, a testable expectation, we spotlight the GalT example to showcase the untapped potential of sugar-phosphate phosphatases with distinctive substrate-recognition properties for measuring the activity of various metabolic enzymes (e.g. trehalose-6-phosphate synthase, N-acetyl-glucosamine-6-phosphate deacetylase, phosphofructokinase).


Assuntos
Monoéster Fosfórico Hidrolases , UTP-Hexose-1-Fosfato Uridililtransferase , Humanos , Ensaios Enzimáticos , Açúcares , Uridina Difosfato Glucose , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
3.
Pathogens ; 11(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36297159

RESUMO

Although salmonellosis, an infectious disease, is a significant global healthcare burden, there are no Salmonella-specific vaccines or therapeutics for humans. Motivated by our finding that FraB, a Salmonella deglycase responsible for fructose-asparagine catabolism, is a viable drug target, we initiated experimental and computational efforts to identify inhibitors of FraB. To this end, our recent high-throughput screening initiative yielded almost exclusively uncompetitive inhibitors of FraB. In parallel with this advance, we report here how a separate structural and computational biology investigation of FrlB, a FraB paralog, led to the serendipitous discovery that 2-deoxy-6-phosphogluconate is a competitive inhibitor of FraB (KI ~ 3 µM). However, this compound was ineffective in inhibiting the growth of Salmonella in a liquid culture. In addition to poor uptake, cellular metabolic transformations by a Salmonella dehydrogenase and different phosphatases likely undermined the efficacy of 2-deoxy-6-phosphogluconate in live-cell assays. These insights inform our ongoing efforts to synthesize non-hydrolyzable/-metabolizable analogs of 2-deoxy-6-phosphogluconate. We showcase our findings largely to (re)emphasize the role of serendipity and the importance of multi-pronged approaches in drug discovery.

4.
Methods Enzymol ; 659: 37-70, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752295

RESUMO

Purification of recombinant proteins typically entails overexpression in heterologous systems and subsequent chromatography-based isolation. While denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis is routinely used to screen a variety of overexpression conditions (e.g., host, medium, inducer concentration, post-induction temperature and/or incubation time) and to assess the purity of the final product, its limitations, including aberrant protein migration due to compositional eccentricities or incomplete denaturation, often preclude firm conclusions regarding the extent of overexpression and/or purification. Therefore, we recently reported an automated liquid chromatography-mass spectrometry-based strategy that couples immobilized metal affinity chromatography (IMAC) with size exclusion-based online buffer exchange (OBE) and native mass spectrometry (nMS) to directly analyze cell lysates for the presence of target proteins. IMAC-OBE-nMS can be used to assess whether target proteins (1) are overexpressed in soluble form, (2) bind and elute from an IMAC resin, (3) oligomerize, and (4) have the expected mass. Here, we use four poly-His-tagged proteins to demonstrate the potential of IMAC-OBE-nMS for expedient optimization of overexpression and purification conditions for recombinant protein production.


Assuntos
Histidina , Cromatografia de Afinidade/métodos , Eletroforese em Gel de Poliacrilamida , Histidina/metabolismo , Espectrometria de Massas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
Microbiol Mol Biol Rev ; 85(4): e0012321, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34585982

RESUMO

Accumulation of phosphorylated intermediates during cellular metabolism can have wide-ranging toxic effects on many organisms, including humans and the pathogens that infect them. These toxicities can be induced by feeding an upstream metabolite (a sugar, for instance) while simultaneously blocking the appropriate metabolic pathway with either a mutation or an enzyme inhibitor. Here, we survey the toxicities that can arise in the metabolism of glucose, galactose, fructose, fructose-asparagine, glycerol, trehalose, maltose, mannose, mannitol, arabinose, and rhamnose. Select enzymes in these metabolic pathways may serve as novel therapeutic targets. Some are conserved broadly among prokaryotes and eukaryotes (e.g., glucose and galactose) and are therefore unlikely to be viable drug targets. However, others are found only in bacteria (e.g., fructose-asparagine, rhamnose, and arabinose), and one is found in fungi but not in humans (trehalose). We discuss what is known about the mechanisms of toxicity and how resistance is achieved in order to identify the prospects and challenges associated with targeted exploitation of these pervasive metabolic vulnerabilities.


Assuntos
Lactose , Xilose , Arabinose , Galactose , Humanos , Fosfatos
6.
PLoS One ; 10(4): e0123360, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874568

RESUMO

Free radical scavenging activity (FRSA), total phenolic content (TPC), and total flavonoid content (TFC) of in vitro cultured and field grown Withania somnifera (Ashwagandha) roots were investigated. Withanolides analysis and comprehensive metabolic profiling between 100% methanol extracts of in vitro and field grown root tissues was performed using high performance thin layer chromatography (HPTLC) and gas chromatography-mass spectrometry (GC-MS), respectively. Significantly higher levels of FRSA, TPC, and TFC were observed in in-vitro cultured roots compared with field grown samples. In addition, 30 day-cultured in vitro root samples (1 MIR) exhibited a significantly higher FRSA (IC50 81.01 µg/mL), TPC (118.91 mg GAE/g), and TFC (32.68 mg CE/g) compared with those in 45 day-cultured samples (1.5 MIR). Total of 29 metabolites were identified in in vitro cultured and field grown roots by GC-MS analysis. The metabolites included alcohols, organic acids, purine, pyrimidine, sugars, and putrescine. Vanillic acid was only observed in the in vitro cultured root samples, and higher level of the vanillic acid was observed in 1 MIR when compared to 1.5 MIR. Therefore, it is suggested that 1 MIR might serve as an alternative to field grown roots for the development of medicinal and functional food products.


Assuntos
Sequestradores de Radicais Livres/química , Metabolômica , Withania/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Flavonoides/análise , Flavonoides/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/análise , Fenóis/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Análise de Componente Principal , Withania/química , Vitanolídeos/análise , Vitanolídeos/metabolismo
7.
BMC Genomics ; 16: 14, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608483

RESUMO

BACKGROUND: The production of metabolites via in vitro culture is promoted by the availability of fully defined metabolic pathways. Withanolides, the major bioactive phytochemicals of Withania somnifera, have been well studied for their pharmacological activities. However, only a few attempts have been made to identify key candidate genes involved in withanolide biosynthesis. Understanding the steps involved in withanolide biosynthesis is essential for metabolic engineering of this plant to increase withanolide production. RESULTS: Transcriptome sequencing was performed on in vitro adventitious root and leaf tissues using the Illumina platform. We obtained a total of 177,156 assembled transcripts with an average unigene length of 1,033 bp. About 13% of the transcripts were unique to in vitro adventitious roots but no unique transcripts were observed in in vitro-grown leaves. A putative withanolide biosynthetic pathway was deduced by mapping the assembled transcripts to the KEGG database, and the expression of candidate withanolide biosynthesis genes -were validated by qRT PCR. The accumulation pattern of withaferin A and withanolide A varied according to the type of tissue and the culture period. Further, we demonstrated that in vitro leaf extracts exhibit anticancer activity against human gastric adenocarcinoma cell lines at sub G1 phase. CONCLUSIONS: We report here a validated large-scale transcriptome data set and the potential biological activity of in vitro cultures of W. somnifera. This study provides important information to enhance tissue-specific expression and accumulation of secondary metabolites, paving the way for industrialization of in vitro cultures of W. somnifera.


Assuntos
Transcriptoma , Withania/metabolismo , Vitanolídeos/metabolismo , Antioxidantes/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Etiquetas de Sequências Expressas , Humanos , Repetições de Microssatélites/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Análise de Sequência de RNA , Withania/genética , Vitanolídeos/isolamento & purificação , Vitanolídeos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...