Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 3(5): 797-812, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30850386

RESUMO

The oncolytic reovirus (RV) has demonstrated clinical efficacy and minimal toxicity in a variety of cancers, including multiple myeloma (MM). MM is a malignancy of plasma cells that is considered treatable but incurable because of the 90% relapse rate that is primarily from drug resistance. The systemic nature of MM and the antitumor immunosuppression by its tumor microenvironment presents an ongoing therapeutic challenge. In the present study, we demonstrate that RV synergizes with the standard-of-care MM drug bortezomib (BTZ) and, importantly, enhances its therapeutic potential in therapy-resistant human MM cell lines in vitro. Using the syngeneic Vk*MYC BTZ-resistant immunocompetent transplantable MM murine model, we also demonstrate that mice harboring BTZ-insensitive MM tumors respond to the RV/BTZ combination treatment in terms of decreased tumor burden and improved overall survival (P < .00001). We demonstrate that BTZ augments RV replication in tumor-associated endothelial cells and myeloma cells, leading to enhanced viral delivery and thereby stimulating cytokine release, immune activity, apoptosis, and reduction of the MM-associated immune suppression. We conclude that combined RV/BTZ is an attractive therapeutic strategy with no safety signals for the treatment of MM.


Assuntos
Bortezomib/uso terapêutico , Terapia Combinada/métodos , Imunoterapia/métodos , Mieloma Múltiplo/terapia , Terapia Viral Oncolítica/métodos , Animais , Bortezomib/farmacologia , Linhagem Celular Tumoral , Células Endoteliais/virologia , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/mortalidade , Vírus Oncolíticos/imunologia , Terapia de Salvação/métodos , Replicação Viral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancers (Basel) ; 10(6)2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29914097

RESUMO

As the current efficacy of oncolytic viruses (OVs) as monotherapy is limited, exploration of OVs as part of a broader immunotherapeutic treatment strategy for cancer is necessary. Here, we investigated the ability for immune checkpoint blockade to enhance the efficacy of oncolytic reovirus (RV) for the treatment of breast cancer (BrCa). In vitro, oncolysis and cytokine production were assessed in human and murine BrCa cell lines following RV exposure. Furthermore, RV-induced upregulation of tumor cell PD-L1 was evaluated. In vivo, the immunocompetent, syngeneic EMT6 murine model of BrCa was employed to determine therapeutic and tumor-specific immune responses following treatment with RV, anti-PD-1 antibodies or in combination. RV-mediated oncolysis and cytokine production were observed following BrCa cell infection and RV upregulated tumor cell expression of PD-L1. In vivo, RV monotherapy significantly reduced disease burden and enhanced survival in treated mice, and was further enhanced by PD-1 blockade. RV therapy increased the number of intratumoral regulatory T cells, which was reversed by the addition of PD-1 blockade. Finally, dual treatment led to the generation of a systemic adaptive anti-tumor immune response evidenced by an increase in tumor-specific IFN-γ producing CD8⁺ T cells, and immunity from tumor re-challenge. The combination of PD-1 blockade and RV appears to be an efficacious immunotherapeutic strategy for the treatment of BrCa, and warrants further investigation in early-phase clinical trials.

3.
Blood Cancer J ; 7(12): 640, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208938

RESUMO

Multiple Myeloma (MM), a clonal malignancy of antibody-producing plasma cells, is the second most common hematologic malignancy and results in significant patient morbidity and mortality. The high degree of immune dysregulation in MM, including T cell imbalances and up-regulation of immunosuppressive checkpoint proteins and myeloid derived suppressor cells, allows this malignancy to escape from host immune control. Despite advances in the therapeutic landscape of MM over the last decade, including the introduction of immunomodulatory drugs, the prognosis for this disease is poor, with less than 50% of patients surviving 5 years. Thus, novel treatment strategies are required. Oncolytic viruses (OV) are a promising new class of therapeutics that rely on tumour specific oncolysis and the generation of a potent adaptive anti-tumour immune response for efficacy. To date, a number of OV have shown efficacy in pre-clinical studies of MM with three reaching early phase clinical trials. OVs represent a rational therapeutic strategy for MM based on (1) their tumour tropism, (2) their ability to potentiate anti-tumour immunity and (3) their ability to be rationally combined with other immunotherapeutic agents to achieve a more robust clinical response.


Assuntos
Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Mieloma Múltiplo/terapia , Terapia Viral Oncolítica/métodos , Humanos
4.
Front Oncol ; 7: 114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634571

RESUMO

Oncolytic viruses (OV) represent a promising strategy to augment the spectrum of cancer therapeutics. For efficacy, they rely on two general mechanisms: tumor-specific infection/cell-killing, followed by subsequent activation of the host's adaptive immune response. Numerous OV genera have been utilized in clinical trials, ultimately culminating in the 2015 Food and Drug Administration approval of a genetically engineered herpes virus, Talminogene laherparepvec (T-VEC). It is generally accepted that OV as monotherapy have only modest clinical efficacy. However, due to their ability to elicit specific antitumor immune responses, they are prime candidates to be paired with other immune-modulating strategies in order to optimize therapeutic efficacy. Synergistic strategies to enhance the efficacy of OV include augmenting the host antitumor response through the insertion of therapeutic transgenes such as GM-CSF, utilization of the prime-boost strategy, and combining OV with immune-modulatory drugs such as cyclophosphamide, sunitinib, and immune checkpoint inhibitors. This review provides an overview of these immune-based strategies to improve the clinical efficacy of oncolytic virotherapy.

5.
Autophagy ; 9(3): 413-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23322106

RESUMO

Multiple myeloma (MM) is a clonal plasma cell malignancy that accounts for 10-15% of newly diagnosed hematological cancers. Although significant advances have been made in the treatment of MM the disease still remains incurable. The oncolytic potential of reovirus has previously been demonstrated by others and us and is currently in phase III clinical trials for solid tumors. In addition a phase I clinical trial has recently been initiated for MM. Despite the clinical activity, the mechanism(s) of cell death caused by reovirus in MM is yet not yet well elucidated. A comprehensive understanding of reovirus-mediated histology-specific cell death mechanisms is imperative if this therapeutic is to become a standard of care for patients. Previously we have shown that reovirus-mediated cell death of breast and prostate cancer is orchestrated via apoptosis. The present study demonstrates for the first time that in addition to inducing apoptosis reovirus also upregulates autophagy during oncolysis of MM.


Assuntos
Apoptose , Autofagia , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/terapia , Terapia Viral Oncolítica/métodos , Reoviridae/fisiologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/metabolismo
6.
Clin Cancer Res ; 18(18): 4962-72, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22761466

RESUMO

PURPOSE: Despite the recent advances made in the treatment of multiple myeloma, the disease still remains incurable. The oncolytic potential of reovirus has previously been shown and is currently in phase III clinical trials for solid tumors. We tested the hypothesis that reovirus can successfully target human multiple myeloma in vitro, ex vivo, and in vivo without affecting human hematopoietic stem cell (HHSC) re-population/differentiation in a murine model that partially recapitulates human multiple myeloma. EXPERIMENTAL DESIGN: Human myeloma cell lines and ex vivo tumor specimens were exposed to reovirus and oncolysis and mechanisms of cell death were assessed. RPMI 8226(GFP+) cells were injected intravenously to non-obese diabetic/severe combined immune deficient (NOD/SCID) mice and treated with live reovirus (LV) or dead virus (DV). Multiple myeloma disease progression was evaluated via whole-body fluorescence and bone marrow infiltration. HHSCs exposed to LV/DV were injected to NOD/SCID mice and re-population/differentiation was monitored. RESULTS: A total of six of seven myeloma cell lines and five of seven patient tumor specimens exposed to reovirus showed significant in vitro sensitivity. Tumor response of multiple myeloma by LV, but not DV, was confirmed by comparison of total tumor weights (P = 0.05), and bone marrow infiltration (1/6, LV; 5/6, DV). Mice injected with LV- or DV-exposed HHSCs maintained in vivo re-population/lineage differentiation showing a lack of viral effect on the stem cell compartment. Reovirus oncolysis was mediated primarily by activation of the apoptotic pathways. CONCLUSIONS: The unique ability of reovirus to selectively kill multiple myeloma while sparing HHSCs places it as a promising systemic multiple myeloma therapeutic for clinical testing.


Assuntos
Mieloma Múltiplo/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos , Reoviridae , Animais , Apoptose , Autofagia , Medula Óssea/patologia , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Feminino , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Bone Marrow Res ; 2011: 632948, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046569

RESUMO

Multiple myeloma (MM) is a B-cell malignancy that is currently felt to be incurable. Despite recently approved novel targeted treatments such as lenalidomide and bortezomib, most MM patients' relapse is emphasizing the need for effective and well-tolerated therapies for this deadly disease. The use of oncolytic viruses has garnered significant interest as cancer therapeutics in recent years, and are currently under intense clinical investigation. Both naturally occurring and engineered DNA and RNA viruses have been investigated preclinically as treatment modalities for several solid and hematological malignancies. Presently, only a genetically modified measles virus is in human clinical trials for MM. The information obtained from this and other future clinical trials will guide clinical application of oncolytic viruses as anticancer agents for MM. This paper provides a timely overview of the history of oncolytic viruses for the treatment of MM and future strategies for the optimization of viral therapy for this disease.

8.
Cancer Res ; 70(6): 2435-44, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20215509

RESUMO

Reovirus is a nonattenuated double-stranded RNA virus that exploits aberrant signaling pathways allowing selective cytotoxicity against multiple cancer histologies. The use of reovirus as a potential treatment modality for prostate cancer has not previously been described, and in this study evidence of in vitro and in vivo activity against prostate cancer was seen both in preclinical models and in six patients. The human prostate carcinoma cell lines PC-3, LN-CaP, and DU-145 exposed to replication-competent reovirus showed evidence of infection as illustrated by viral protein synthesis, cytopathic effect, and release of viral progeny. This oncolytic effect was found to be manifested through apoptosis, as DNA fragmentation, Apo 2.7 expression, Annexin V binding, and poly(ADP-ribose) polymerase cleavage were observed in live reovirus-infected cells, but not in uninfected or dead virus-treated cells. In vivo, hind flank severe combined immunodeficient/nonobese diabetic murine xenograft showed reduction in tumor size when treated with even a single intratumoral injection of reovirus. Finally, intralesional reovirus injections into a cohort of six patients with clinically organ-confined prostate cancer resulted in minimal side effects and evidence of antitumor activity. Histologic analysis after prostatectomy found a significant CD8 T-cell infiltration within the reovirus-injected areas as well as evidence of increased caspase-3 activity. These findings suggest that reovirus therapy may provide a promising novel treatment for prostate cancer and also imply a possible role for viral immune targeting of tumor.


Assuntos
Orthoreovirus Mamífero 3/fisiologia , Terapia Viral Oncolítica/métodos , Neoplasias da Próstata/terapia , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata/patologia , Neoplasias da Próstata/virologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Blood ; 102(1): 377-87, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12637331

RESUMO

Hematologic stem cell rescue after high-dose cytotoxic therapy is extensively used for the treatment of many hematopoietic and solid cancers. Gene marking studies suggest that occult tumor cells within the autograft may contribute to clinical relapse. To date purging of autografts contaminated with cancer cells has been unsuccessful. The selective oncolytic property of reovirus against myriad malignant histologies in in vitro, in vivo, and ex vivo systems has been previously demonstrated. In the present study we have shown that reovirus can successfully purge cancer cells within autografts. Human monocytic and myeloma cell lines as well as enriched ex vivo lymphoma, myeloma, and Waldenström macroglobulinemia patient tumor specimens were used in an experimental purging model. Viability of the cell lines or purified ex vivo tumor cells of diffuse large B-cell lymphoma, chronic lymphocytic leukemia, Waldenström macroglobulinemia, and small lymphocytic lymphoma was significantly reduced after reovirus treatment. Further, [35S]-methionine labeling and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of cellular proteins demonstrated reovirus protein synthesis and disruption of host cell protein synthesis as early as 24 hours. Admixtures of apheresis product with the abovementioned tumor cells and cell lines treated with reovirus showed complete purging of disease. In contrast, reovirus purging of enriched ex vivo multiple myeloma, Burkitt lymphoma, and follicular lymphoma was incomplete. The oncolytic action of reovirus did not affect CD34+ stem cells or their long-term colony-forming assays even after granulocyte colony-stimulating factor (G-CSF) stimulation. Our results indicate the ex vivo use of an unattenuated oncolytic virus as an attractive purging strategy for autologous stem cell transplantations.


Assuntos
Separação Celular/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Orthoreovirus Mamífero 3/fisiologia , Remoção de Componentes Sanguíneos/métodos , Purging da Medula Óssea , Sobrevivência Celular , Células-Tronco Hematopoéticas , Humanos , Leucemia/patologia , Leucemia/terapia , Linfoma/patologia , Linfoma/terapia , Células Neoplásicas Circulantes , Transplante Autólogo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...