Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 129: 106195, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36274386

RESUMO

The importance of the quinoxaline framework is exemplified by its presence in the well-known drugs such as varenicline, brimonidine, quinacillin, etc. In the past few years, preparation of a variety of organic compounds containing the quinoxaline framework has been reported by several research groups. The chloroquinoxalines were successfully used as substrates in many of these synthetic approaches due to their easy availability along with the reactivity especially towards a diverse range of metal and transition metal-catalyzed transformations including Sonogashira, Suzuki, Heck type of cross-coupling reactions. The transition metals e.g., Pd, Cu, Fe and Nb catalysts played a key role in these transformations for the construction of various CX (e.g., CC, CN, CO, CS, CP, CSe, etc) bonds. These approaches can be classified based on the catalyst employed, type of the reaction performed and nature of CX bond formation during the reaction. Several of these resultant quinoxaline derivatives have shown diverse biological activities which include apoptosis inducing activities, SIRT1 inhibition, inhibition of luciferace enzyme, antibacterial and antifungal activities, cytotoxicity towards cancer cells, inhibition of PDE4 (phosphodiesterase 4), potential uses against COVID-19, etc. Notably, a review article covering the literature based on transition metal-catalyzed reactions of chloroquinoxalines at the same time summarizing the relevant biological activities of resultant products is rather uncommon. Therefore, an attempt is made in the current review article to summarize (i) the recent advances noted in the transition metal-catalyzed reactions of chloroquinoxalines (ii) with the relevant mechanistic discussions (iii) along with the in vitro, and in silico biological studies (wherever reported) (iv) including Structure-Activity Relationship (SAR) within the particular series of the products reported between 2010 and 2022.


Assuntos
Preparações Farmacêuticas , Quinoxalinas , Elementos de Transição , Humanos , Catálise , Quinoxalinas/síntese química , Quinoxalinas/química , Quinoxalinas/farmacologia , Elementos de Transição/síntese química , Elementos de Transição/farmacologia , Relação Estrutura-Atividade , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química
2.
Bioorg Chem ; 129: 106202, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272252

RESUMO

Efforts have been devoted for the discovery and development of positive allosteric modulators (PAMs) of 5-HT2CR because of their potential advantages over the orthosteric agonist like Lorcaserin that was withdrawn from the market. On the other hand, pursuing a positive ago-allosteric modulator (PAAM) is considered as beneficial particularly when an agonist is not capable of affecting the potency of the endogenous agonist sufficiently. In search of a suitable PAAM of 5-HT2CR we adopted an in silico based approach that indicated the potential of the 3-(1-hydroxycycloalkyl) substituted isoquinolin-1-one derivatives against the 5-HT2CR as majority of these molecules interacted with the site other than that of Lorcaserin with superior docking scores. These compounds along with the regioisomeric 3-methyleneisoindolin-1-one derivatives were prepared via the Cu(OAc)2 catalyzed coupling of 2-iodobenzamide with 1-ethynylcycloalkanol under ultrasound irradiation. According to the in vitro studies, most of these compounds were not only found to be potent and selective agonists but also emerged as PAAM of 5-HT2CR whereas Lorcaserin did not show PAAM activities. According to the SAR study the isoquinolin-1(2H)-ones appeared as better PAAM than isoindolin-1-ones whereas the presence of hydroxyl group appeared to be crucial for the activity. With the potent PAAM activity for 5-HT2CR (EC50 = 1 nM) and 107 and 86-fold selectivity towards 5-HT2C over 5-HT2A and 5-HT2B the compound 4i was identified as a hit molecule. The compound showed good stability in male BALB/c mice brain homogenate (∼85 % remaining after 2 h), moderate stability in the presence of rat liver microsomes (42 % remaining after 1 h) and acceptable PK properties with fast reaching in the brain maintaining âˆ¼ 1:1 brain/plasma concentration ratio. The compound at a dose of 50 mg/kg exhibited decreased trend in the food intake starting from day 3 in S.D. rats, which reached significant by 5th day, and the effect was comparable to Lorcaserin (10 mg/kg) on day 5. Thus, being the first example of PAAM of 5-HT2CR the compound 4i is of further medicinal interest.


Assuntos
Indóis , Isoquinolinas , Agonistas do Receptor 5-HT2 de Serotonina , Animais , Masculino , Camundongos , Ratos , Encéfalo , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Camundongos Endogâmicos BALB C , Isoquinolinas/síntese química , Isoquinolinas/química , Isoquinolinas/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia
3.
Bioorg Chem ; 124: 105857, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594765

RESUMO

Addressing the increasing incidences of cancer worldwide along with the multifaceted problem of drug resistance via development of new anticancer agents has become an essential goal. Due to the known cytotoxic effects and reported Akt inhibitory potential of azaindoles we designed a new framework incorporating the structural features of rosuvastatin and 5- or 7-azaindole. The framework was used to construct a library of small molecules for further pharmacological evaluation. The design was supported by the docking studies of two representative molecules in silico. A one-pot sonochemical approach was established for the synthesis of these rosuvastatin based azaindoles that involved the coupling-cyclization of a rosuvastatin derived terminal alkyne with appropriate 3-iodopyridine derivatives under Pd/Cu-catalysis. When tested using an MTT assay, some of the synthesized compounds showed desirable cytotoxic effects against three cancer cell lines e.g. HCT 116, Hep G2 and PA-1 but no significant effects against the non-cancerous HEK cell line. According to the SAR the 5-azaindole ring appeared to be marginally better than the 7-azaindole whereas the activity was varied with the variation of sulfonamide moiety attached to the N-1 atom of the azaindole ring. Among all the groups present in the sulfonamide moiety the p-MeC6H4 group appeared to be most effective in terms of activity. While 3b and 5b were identified as initial hit molecules the compound 5b (in addition to 3b) also showed significant inhibition of Akt1 in vitro that was reflected by its strong interaction with Akt1 in silico (with the docking score -11.7 kcal/mol) involving two H-bonding interactions with Ser7 and Asp439 residues. Further, a reasonable ADME was predicted for 5bin silico. Being a potent inhibitor (MIA Paca-2 IC50 = 18.79 ± 0.17 nM) and with NOAEL (No Observed Adverse Effect Level) > 100 µM in Zebrafish, 5b emerged as a promising compound.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/química , Catálise , Linhagem Celular Tumoral , Proliferação de Células , Ciclização , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Rosuvastatina Cálcica/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Peixe-Zebra
4.
Bioorg Chem ; 121: 105667, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182886

RESUMO

In search of potent and new anti-inflammatory agents, we explored a new class of isocoumarin derivatives possessing the 3-oxoalkyl moiety at C-4 position. These compounds were synthesized via the FeCl3 catalyzed construction of isocoumarin ring. The methodology involved coupling of 2-alkynyl benzamides with alkyl vinyl ketone and proceeded via a regioselective cyclization to give the desired compound as a result of formation of CO and CC bonds. A large number of isocoumarins were synthesized and assessed against PDE4B in vitro. While isocoumarins containing an aminosulfonyl moiety attached to the C-3 aryl ring showed encouraging inhibition of PDE4B, some of the derivatives devoid of aminosulfonyl moiety also showed considerable inhibition. According to the SAR analysis the C6H4NHSO2R2-m moiety at C-3 position of the isocoumarin ring was favorable when the R2 was chosen as an aryl or 2-thienyl group whereas the presence of F or OMe substituent at C-7 of the isocoumarin ring was found to be beneficial. The compound 5f with IC50 values 0.125 ± 0.032 and 0.43 ± 0.013 µM against PDE4B and 4D, respectively was identified as an initial hit. It showed in silico interaction with the PHE678 residue in the CR3 region of PDE4B and relatively less number of interactions with PDE4D. Besides showing the PDE4 selectivity over other PDEs and TNF-α inhibition in vitro the compound 5f at an intraperitoneal dose of 30 mg/kg demonstrated the protective effects against the development of arthritis and potent immunomodulatory activity in adjuvant induced arthritic (AIA) rats. Furthermore, no significant adverse effects were observed for this compound when evaluated in a systematic toxicity (e.g. teratogenicity, hepatotoxicity and cardiotoxicity) studies in zebrafish at various concentrations. Collectively, being a new, potent, moderately selective and safe inhibitor of PDE4B the isocoumarin 5f can be progressed into further pharmacological studies.


Assuntos
Compostos Férricos , Isocumarinas , Animais , Catálise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Isocumarinas/química , Ratos , Relação Estrutura-Atividade , Peixe-Zebra/metabolismo
5.
Bioorg Chem ; 116: 105380, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670330

RESUMO

A series of indole based novel Schiff bases was designed as potential agonists of 5-HT2C receptor that was supported by docking studies in silico. These compounds were synthesized via Amberlyst-15 catalysed condensation of an appropriate pyrazole based primary amine with the corresponding indole-3-aldehyde under ultrasound irradiation at ambient temperature. A number of target Schiff bases were obtained in good yields (77-87%) under mild conditions within 1 h. Notably, the methodology afforded the corresponding pyrazolo[4,3-d]pyrimidin-7(4H)-one derivatives when the primary amine was replaced by a secondary amine. Several Schiff bases showed agonist activity when tested against human 5-HT2C using luciferase assay in HEK293T cells in vitro. The SAR (Structure-Activity-Relationship) studies suggested that the imine moiety was more favorable over its cyclic form i.e. the corresponding pyrazolopyrimidinone ring. The Schiff bases 3b (EC50 1.8 nM) and 3i (EC50 5.7 nM) were identified as the most active compounds and were comparable with Lorcaserin (EC50 8.5 nM). Also like Lorcaserin, none of these compounds were found to be PAM of 5-HT2C. With ∼24 and ∼150 fold selectivity towards 5-HT2C over 5-HT2A and 5-HT2B respectively the compound 3i that reduced locomotor activity in zebrafish (Danio rerio) larvae model emerged as a promising hit molecule for further study.


Assuntos
Indóis/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Estirenos/química , Ondas Ultrassônicas , Catálise , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Agonistas do Receptor 5-HT2 de Serotonina/química , Relação Estrutura-Atividade
6.
Chem Commun (Camb) ; 57(78): 10091-10094, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34515287

RESUMO

A Pd-catalysed regioselective synthesis of 4,5-disubstituted 7-membered N/O-heterocycles was achieved via the 7-endo-dig cyclization followed by C-C bond formation of 2-(1-alkynyl)phenylacetamide. The ligand/additive free cascade reaction proceeded in the presence of PdCl2 in aqueous MeCN when the separate and individual use of methyl vinyl ketone and allyl bromide generally afforded an O- and N-heterocycle, respectively. The pharmacological assay was performed to identify the first example of a 1H-benzo[d]azepin-2(3H)-one based novel inhibitor of PDE4B.

7.
Bioorg Chem ; 115: 105265, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426160

RESUMO

In spite of possessing a wide range of pharmacological properties the anti-inflammatory activities of isoquinolin-1(2H)-ones were rarely known or explored earlier. PDE4 inhibitors on the other hand in addition to their usefulness in treating inflammatory diseases have been suggested to attenuate the cytokine storm in COVID-19 especially TNF-α. In our effort, a new class of isoquinolin-1(2H)-ones derivatives containing an aminosulfonyl moiety were designed and explored as potential inhibitors of PDE4. Accordingly, for the first time a CuCl2-catalyzed inexpensive, faster and ligand/additive free approach has been developed for the synthesis of these predesigned isoquinolin-1(2H)-one derivatives via the coupling-cyclization strategy. Thus, the CuCl2-catalyzed reaction of 2-iodobenzamides with appropriate terminal alkynes proceeded with high chemo and regioselectivity affording the desired compounds in 77-84% yield within 1-1.5 h. The methodology also afforded simpler isoquinolin-1(2H)-ones devoid of aminosulfonyl moiety showing a broader generality and scope of this approach. Several of the synthesized compounds especially 3c, 3k and 3s showed impressive inhibition (83-90%) of PDE4B when tested at 10 µM in vitro whereas compounds devoid of aminosulfonyl moiety was found to be less active. In spite of high inhibition showed at 10 µM these compounds did not show proper concertation dependent inhibition below 1 µM that was reflected in their IC50 values e.g. 2.43 ± 0.32, 3.26 ± 0.24 and 3.63 ± 0.80 µM for 3k, 3o and 3s respectively. The anti-inflammatory potential of these compounds was indicated by their TNF-α inhibition (60-50% at 10 µM). The in silico docking studies of these molecules suggested good interactions with PDE4B and selective inhibition of PDE4B by 3k over PDE4D that was supported by in vitro assay results. These observations together with the favorable ADME and safety predicted for 3kin silico not only suggested 3k as an interesting hit molecule for further studies but also reveal the first example of isoquinolin-1(2H)-one based inhibitor of PDE4B.


Assuntos
Anti-Inflamatórios/química , Cobre/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Isoquinolinas/química , Inibidores da Fosfodiesterase 4/química , Animais , Anti-Inflamatórios/síntese química , Catálise , Ciclização , Ensaios Enzimáticos , Humanos , Isoquinolinas/síntese química , Camundongos , Estrutura Molecular , Inibidores da Fosfodiesterase 4/síntese química , Células RAW 264.7 , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores
8.
Eur J Med Chem ; 221: 113514, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992926

RESUMO

While anti-inflammatory properties of isocoumarins are known their PDE4 inhibitory potential was not explored previously. In our effort the non-PDE4 inhibitor isocoumarins were transformed into the promising inhibitors via introducing an aminosulfonyl/aminocarboxamide moiety to the C-3 benzene ring attached to the isocoumarin framework. This new class of isocoumarins were synthesized via a PdCl2-catalyzed construction of the 4-allyl substituted 3-aryl isocoumarin ring starting from the appropriate 2-alkynyl benzamide derivative. Several compounds showed good inhibition of PDE4B in vitro and the SAR indicated superiority of aminosulfonamide moiety over aminocarboxamide in terms of PDE4B inhibition. Two compounds 3q and 3u with PDE4B IC50 = 0.43 ± 0.11 and 0.54 ± 0.19 µM and ≥ 2-fold selectivity over PDE4D emerged as initial hits. The participation of aminosulfonamide moiety in PDE4B inhibition and the reason for selectivity though moderate shown by 3q and 3u was revealed by the in silico docking studies. In view of potential usefulness of moderately selective PDE4B inhibitors the compound 3u (that showed PDE4 selectivity over other PDEs) was further evaluated in adjuvant induced arthritic rats. At an intraperitoneal dose of 30 mg/kg the compound showed a significant reduction in paw swelling (in a dose dependent manner), inflammation and pannus formation (in the knee joints) as well as pro-inflammatory gene expression/mRNA levels and increase in body weight. Moreover, besides its TNF-α inhibition and no significant toxicity in an MTT assay the compound did not show any adverse effects in a thorough toxicity studies e.g. teratogenicity, hepatotoxicity, cardiotoxicity and apoptosis in zebrafish. Thus, the isocoumarin 3u emerged as a new, safe and moderately selective PDE4B inhibitor could be useful for inflammatory diseases possibly including COVID-19.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Isocumarinas/uso terapêutico , Inibidores da Fosfodiesterase 4/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/toxicidade , Artrite Experimental/patologia , Catálise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Feminino , Isocumarinas/síntese química , Isocumarinas/metabolismo , Isocumarinas/toxicidade , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/patologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Paládio/química , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/metabolismo , Inibidores da Fosfodiesterase 4/toxicidade , Ligação Proteica , Células RAW 264.7 , Ratos Wistar , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo , Sulfonamidas/toxicidade , Peixe-Zebra
9.
Eur J Med Chem ; 201: 112335, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32599323

RESUMO

A new class of 3-substituted isocoumarin/3-alkylidenephthalide based novel small molecules derived from rosuvastatin were designed and synthesized via the ultrasound assisted Cu-mediated coupling-cyclization in a single pot with remarkable regioselectivity. The phthalides were generally obtained at lower temperature whereas the use of elevated temperature afforded isocoumarins. Two compounds e.g. 3n and 4d showed promising cytotoxic effects when tested against HCT 116, HepG2 and PA-1 cell lines at 10 µM. Indeed, 4d was found to be a potent cytotoxic agent (IC50 ∼ 0.76-4.51 µM). Both 3n and 4d were tested for their effects on PANC-1 cells. Considerable decrease in p-Akt substrates shown by 4d and 3n at 50 µM (western blot analysis) indicated their ability to inhibit p-Akt signal transduction pathway and arresting growth of PANC-1 cells in vitro. This was further supported by the cytotoxic effect of 4d on PANC-1 cells (MTT assay) that was better than rosuvastatin. While none of 3n and 4d showed any significant effect on non-cancerous HEK cell line (indicating their potential selectivity towards cancer cells) these compounds were further evaluated for their toxicities in Zebrafish embryo. The NOAEL (No Observed Adverse Effect Level) for teratogenicity, hepatotoxicity and cardiotoxicity was found to be 100 µM for both compound. Thus, 4d as a novel and potent but safer cytotoxic agent with potential to treat colorectal/ovarian and pancreatic cancer is of further medicinal interest.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Isocumarinas/farmacologia , Rosuvastatina Cálcica/análogos & derivados , Rosuvastatina Cálcica/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Benzofuranos/síntese química , Benzofuranos/toxicidade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Embrião não Mamífero/efeitos dos fármacos , Humanos , Isocumarinas/síntese química , Isocumarinas/toxicidade , Estrutura Molecular , Rosuvastatina Cálcica/toxicidade , Relação Estrutura-Atividade , Ondas Ultrassônicas , Peixe-Zebra
10.
Bioorg Chem ; 97: 103691, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143019

RESUMO

In spite of their various pharmacological properties the anti-inflammatory potential of benzo[c]phenanthridines remained underexplored. Thus, for the first time PDE4 inhibitory potential of 11,12-dihydro benzo[c]phenanthridine/benzo[c]phenanthridine was assessed in vitro. Elegant synthesis of these compounds was performed via a multi-step sequence consisting of a Pd-catalyzed unusual construction of 4-allyl isocoumarin ring and FeCl3-mediated intramolecular regio- as well as site-selective arene-allyl cyclization as key steps. The overall strategy involved Sonogashira coupling followed by isocoumarin and isoquinolone synthesis, then chlorination and subsequent cyclization to afford a range of 11,12-dihydro derivatives. One of these dihydro compounds was converted to the corresponding benzo[c]phenanthridine that showed concentration dependent inhibition of PDE4B affording an initial hit molecule. The SAR study suggested that 11,12-dihydro analogs were less potent than the compound having unsaturation at the same part of the ring.


Assuntos
Fenantridinas/síntese química , Fenantridinas/farmacologia , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/farmacologia , Animais , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Catálise , Linhagem Celular , Técnicas de Química Sintética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ciclização , Humanos , Isocumarinas/síntese química , Isocumarinas/química , Simulação de Acoplamento Molecular , Paládio/química , Fenantridinas/química , Inibidores da Fosfodiesterase 4/química
11.
Eur J Med Chem ; 174: 198-215, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31035240

RESUMO

A new class of PDE4 inhibitors were designed and synthesized via the InCl3 mediated heteroarylation of indoles and their further derivatization through the Pd(II)-catalyzed CH activation strategy. This effort allowed us to discover a series of 2-(1H-indol-3-yl)-quinoxaline based inhibitors possessing PDE4B selectivity over PDE4D and PDE4C. One of these compounds i.e. 3b (PDE4B IC50 = 0.39 ±â€¯0.13 µM with ∼27 and > 250 fold selectivity for PDE4B over PDE4D and C, respectively) showed effects in Zebrafish experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis when dosed at 3, 10 and 30 mg/kg intraperitoneally. Indeed, it halted the progression of the disease across all these doses tested. At an intraperitoneal dose of 30 mg/kg the compound 3b showed promising effects in adjuvant induced arthritic rats. The compound reduced paw volume, inflammation and pannus formation (in the knee joints) as well as pro-inflammatory gene expression/mRNA levels significantly in arthritic rats. Moreover, this compound was found to be selective towards PDE4 over other families of PDEs in vitro and safe when tested for its probable toxicity (e.g. teratogenicity, hepatotoxicity and cardiotoxicity) in Zebrafish.


Assuntos
Artrite/tratamento farmacológico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Indóis/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Inibidores da Fosfodiesterase 4/uso terapêutico , Quinoxalinas/uso terapêutico , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Adjuvante de Freund , Índio , Indóis/síntese química , Indóis/química , Indóis/toxicidade , Estrutura Molecular , Esclerose Múltipla/induzido quimicamente , Glicoproteína Oligodendrócito-Mielina , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/toxicidade , Quinoxalinas/síntese química , Quinoxalinas/química , Quinoxalinas/toxicidade , Ratos , Relação Estrutura-Atividade , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
12.
RSC Adv ; 10(1): 289-297, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35492515

RESUMO

A series of novel isatin-indole derivatives has been designed as potential inhibitors of chorismate mutase (CM) that is known to be present in bacteria, fungi and higher plants but not in human. The design was supported by in silico docking studies that predicted strong interactions of these molecules with CM. The target compounds were synthesized via the one-pot coupling/cyclization method involving the reaction of an isatin based terminal alkyne with 2-iodosulfanilides under Pd-Cu catalysis. A number of isatin-indole derivatives were prepared using this method. A side product e.g. 2-indolylmethylamino benzoate ester derivative was obtained as a result of isatin ring opening (ethanolysis) of products in certain cases. Additionally, regioselective reduction of selected compounds afforded the corresponding C-3 hydroxy derivatives. All isatin-indole derivatives showed good to high inhibition of CM in vitro among which two compounds (3e and 3f) showed inhibition at nanomolar concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...