Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 133, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368370

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma is an aggressive cancer type with one of the lowest survival rates due to late diagnosis and the absence of effective treatments. A better understanding of PDAC biology will help researchers to discover the Achilles' heel of cancer cells. In that regard, our research team investigated the function of an emerging oncoprotein known as myoferlin. Myoferlin is overexpressed in PDAC and its silencing/targeting has been shown to affect cancer cell proliferation, migration, mitochondrial dynamics and metabolism. Nevertheless, our comprehension of myoferlin functions in cells remains limited. In this study, we aimed to understand the molecular mechanism linking myoferlin silencing to mitochondrial dynamics. METHODS: Experiments were performed on two pancreas cancer cell lines, Panc-1 and MiaPaCa-2. Myoferlin localization on mitochondria was evaluated by immunofluorescence, proximity ligation assay, and cell fractionation. The presence of myoferlin in mitochondria-associated membranes was assessed by cell fractionation and its function in mitochondrial calcium transfer was evaluated using calcium flow experiments, proximity ligation assays, co-immunoprecipitation, and timelapse fluorescence microscopy in living cells. RESULTS: Myoferlin localization on mitochondria was investigated. Our results suggest that myoferlin is unlikely to be located on mitochondria. Instead, we identified myoferlin as a new component of mitochondria-associated membranes. Its silencing significantly reduces the mitochondrial calcium level upon stimulation, probably through myoferlin interaction with the inositol 1,4,5-triphosphate receptors 3. CONCLUSIONS: For the first time, myoferlin was specifically demonstrated to be located in mitochondria-associated membranes where it participates to calcium flow. We hypothesized that this function explains our previous results on mitochondrial dynamics. This study improves our comprehension of myoferlin localization and function in cancer biology.


Assuntos
Proteínas de Ligação ao Cálcio , Neoplasias Pancreáticas , Humanos , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Membranas Associadas à Mitocôndria , Neoplasias Pancreáticas/patologia
3.
Talanta ; 270: 125602, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199121

RESUMO

Human papillomavirus (HPV) interacts, in vitro, with laminin 332 (LN332), a key component of the extracellular matrix. In this study, we performed bio-layer interferometry (BLI) and affinity capillary electrophoresis (ACE) to investigate the binding properties of this interaction. Virus-like particles (VLPs), composed of the HPV16 L1 major capsid protein, were used as HPV model and LN332 as the VLPs binding partner. Using BLI, we quantitatively determined the kinetics of the interaction, via the measurement of VLP binding and release from LN332 immobilized onto the surface of aminopropylsilane biosensors. We found an averaged kon of 1.74 x 104 M-1s-1 and an averaged koff of 1.50 x 10-4 s-1. Furthermore, an ACE method was developed to study the interaction under physiological conditions, where the interactants are moving freely in solution, without any fluorescence labeling. Specifically, a constant amount of HPV16-VLPs was preincubated with increasing LN332 concentrations and then the samples were injected in the capillary electrophoresis instrument. A shift in the migration time of the HPV16-VLP/LN332 complexes, carrying an increasing number of LN332 molecules bound per VLP, was observed. The mobility of the complexes was found to decrease with increasing LN332 concentrations in the sample. It was used to quantify stability constant. From BLI and ACE approaches, we reported an apparent equilibrium dissociation constant in the nanomolar range (8.89 nM and 17.7 nM, respectively) for the complex between HPV16-VLPs and LN332.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Humanos , Calinina , Papillomavirus Humano 16 , Eletroforese Capilar/métodos , Interferometria
4.
Proc Natl Acad Sci U S A ; 120(31): e2216127120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487091

RESUMO

Retroviruses and their host have coevolved in a delicate balance between viral replication and survival of the infected cell. In this equilibrium, restriction factors expressed by infected cells control different steps of retroviral replication such as entry, uncoating, nuclear import, expression, or budding. Here, we describe a mechanism of restriction against human T cell leukemia virus type 1 (HTLV-1) by the helicase-like transcription factor (HLTF). We show that RNA and protein levels of HLTF are reduced in primary T cells of HTLV-1-infected subjects, suggesting a clinical relevance. We further demonstrate that the viral oncogene Tax represses HLTF transcription via the Enhancer of zeste homolog 2 methyltransferase of the Polycomb repressive complex 2. The Tax protein also directly interacts with HLTF and induces its proteasomal degradation. RNA interference and gene transduction in HTLV-1-infected T cells derived from patients indicate that HLTF is a restriction factor. Restoring the normal levels of HLTF expression induces the dispersal of the Golgi apparatus and overproduction of secretory granules. By synergizing with Tax-mediated NF-κB activation, physiologically relevant levels of HLTF intensify the autophagic flux. Increased vesicular trafficking leads to an enlargement of the lysosomes and the production of large vacuoles containing viral particles. HLTF induction in HTLV-1-infected cells significantly increases the percentage of defective virions. In conclusion, HLTF-mediated activation of the autophagic flux blunts the infectious replication cycle of HTLV-1, revealing an original mode of viral restriction.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia de Células T , Humanos , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Linfócitos T/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a DNA
5.
Cell Death Dis ; 14(6): 387, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386014

RESUMO

Wolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1E864K line, presenting a human mutation leading to severe deafness in affected individuals. The homozygous mice showed a profound post-natal HL and vestibular syndrome, a collapse of the endocochlear potential (EP) and a devastating alteration of the stria vascularis and neurosensory epithelium. The mutant protein prevented the localization to the cell surface of the Na+/K+ATPase ß1 subunit, a key protein for the maintenance of the EP. Overall, our data support a key role of WFS1 in the maintenance of the EP and the stria vascularis, via its binding partner, the Na+/K+ATPase ß1 subunit.


Assuntos
Surdez , Síndrome de Wolfram , Animais , Humanos , Camundongos , Adenosina Trifosfatases , Membrana Celular , Epitélio , Síndrome de Wolfram/genética
6.
J Thromb Haemost ; 21(9): 2485-2498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37196847

RESUMO

BACKGROUND: Prosthetic heart valves are the only treatment for most patients with severe valvular heart disease. Mechanical valves, made of metallic components, are the most long-lasting type of replacement valves. However, they are prone to thrombosis and require permanent anticoagulation and monitoring, which leads to higher risk of bleeding and impacts the patient's quality of life. OBJECTIVES: To develop a bioactive coating for mechanical valves with the aim to prevent thrombosis and improve patient outcomes. METHODS: We used a catechol-based approach to produce a drug-releasing multilayer coating adherent to mechanical valves. The hemodynamic performance of coated Open Pivot valves was verified in a heart model tester, and coating durability in the long term was assessed in a durability tester producing accelerated cardiac cycles. Coating antithrombotic activity was evaluated in vitro with human plasma or whole blood under static and flow conditions and in vivo after surgical valve implantation in a pig's thoracic aorta. RESULTS: We developed an antithrombotic coating consisting of ticagrelor- and minocycline-releasing cross-linked nanogels covalently linked to polyethylene glycol. We demonstrated the hydrodynamic performance, durability, and hemocompatibility of coated valves. The coating did not increase the contact phase activation of coagulation, and it prevented plasma protein adsorption, platelet adhesion, and thrombus formation. Implantation of coated valves in nonanticoagulated pigs for 1 month efficiently reduced valve thrombosis compared with noncoated valves. CONCLUSION: Our coating efficiently inhibited mechanical valve thrombosis, which might solve the issues of anticoagulant use in patients and the number of revision surgeries due to valve thrombosis despite anticoagulation.


Assuntos
Doenças das Valvas Cardíacas , Próteses Valvulares Cardíacas , Trombose , Humanos , Animais , Suínos , Fibrinolíticos/farmacologia , Qualidade de Vida , Trombose/etiologia , Trombose/prevenção & controle , Próteses Valvulares Cardíacas/efeitos adversos , Anticoagulantes , Valvas Cardíacas
7.
Cell Tissue Res ; 393(1): 111-117, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37129618

RESUMO

In vertebrate skeletal muscles, the architecture of myofibrils is particularly well conserved throughout the taxa. It is composed of suites of repeating functional units called sarcomeres which give the muscle its striated structure. Here, we show that the skeletal sound producing muscles of the cusk eel Parophidion vassali have a different organisation, distinct from the classical type found in textbooks. Within sarcomeres, filaments are not straight lines but have a Y-shaped structure. This looks like chicken wire, with one branch connecting to a branch from the myofibril above and the other connecting to a branch from the myofibril below. This organisation seems to be an adaptation to counteract a trade-off between the speed and force. The low ratio of myofibrils within cell muscles and the high volume of sarcoplasmic reticulum strongly suggest that these muscles are capable of fast contractions. In parallel, the Z-bands are quite wide about 30% of the sarcomere length. This extraordinary long Z-band could smooth out the tension variations found in high-speed muscle contraction, helping to produce sounds with low variabilities in the sound features. Simultaneously, the Y-shaped structure allows having more cross-bridges, increasing the force in this high-speed muscle.


Assuntos
Miofibrilas , Sarcômeros , Fibras Musculares Esqueléticas , Contração Muscular , Músculo Esquelético
8.
Neuroendocrinology ; 113(12): 1248-1261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36257292

RESUMO

INTRODUCTION: Hippocampal newborn neurons integrate into functional circuits where they play an important role in learning and memory. We previously showed that perinatal exposure to Aroclor 1254, a commercial mixture of polychlorinated biphenyls (PCBs) associated with alterations of cognitive function in children, disrupted the normal maturation of excitatory synapses in the dentate gyrus. We hypothesized that hippocampal immature neurons underlie some of the cognitive effects of PCBs. METHODS: We used newly generated neurons to examine the effects of PCBs in mice following maternal exposure. Newborn dentate granule cells were tagged with enhanced green fluorescent protein using a transgenic mouse line. The transcriptome of the newly generated granule cells was assessed using RNA sequencing. RESULTS: Gestational and lactational exposure to 6 mg/kg/day of Aroclor 1254 disrupted the mRNA expression of 1,308 genes in newborn granule cells. Genes involved in mitochondrial functions were highly enriched with 154 genes significantly increased in exposed compared to control mice. The upregulation of genes involved in oxidative phosphorylation was accompanied by signs of endoplasmic reticulum stress and an increase in lipid peroxidation, a marker of oxidative stress, in the subgranular zone of the dentate gyrus but not in mature granule cells in the granular zone. Aroclor 1254 exposure also disrupted the expression of synaptic genes. Using laser-captured subgranular and granular zones, this effect was restricted to the subgranular zone, where newborn neurons are located. CONCLUSION: Our data suggest that gene expression in newborn granule cells is disrupted by Aroclor 1254 and provide clues to the effects of endocrine-disrupting chemicals on the brain.


Assuntos
Bifenilos Policlorados , Humanos , Feminino , Gravidez , Criança , Camundongos , Animais , Bifenilos Policlorados/farmacologia , Hipocampo , Neurônios/fisiologia , Camundongos Transgênicos , Encéfalo , Estresse Oxidativo , Expressão Gênica , Giro Denteado , Neurogênese
9.
Dev Dyn ; 252(2): 239-246, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36106826

RESUMO

In the cochlea, connexin 26 (Cx26) and connexin 30 (Cx30) co-assemble into two types of homomeric and heteromeric gap junctions between adjacent non-sensory epithelial cells. These channels provide a mechanical coupling between connected cells, and their activity is critical to maintain cochlear homeostasis. Many of the mutations in GJB2 or GJB6, which encode Cx26 and Cx30 in humans, impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. Thus, deciphering the connexin trafficking pathways in situ should represent a major step forward in understanding the pathogenic significance of many of these mutations. A growing body of evidence now suggests that Cx26/Cx30 heteromeric and Cx30 homomeric channels display distinct assembly mechanisms. Here, we review the most recent advances that have been made toward unraveling the biogenesis and stability of these gap junctions in the cochlea.


Assuntos
Conexinas , Surdez , Humanos , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Cóclea/metabolismo , Conexina 30/genética , Conexina 30/metabolismo , Surdez/genética
10.
Redox Biol ; 53: 102324, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533575

RESUMO

Myoferlin, an emerging oncoprotein, has been associated with a low survival in several cancer types including pancreas ductal adenocarcinoma where it controls mitochondria structure and respiratory functions. Owing to the high susceptibility of KRAS-mutated cancer cells to iron-dependent cell death, ferroptosis, and to the high iron content in mitochondria, we investigated the relation existing between mitochondrial integrity and iron-dependent cell death. We discovered that myoferlin targeting with WJ460 pharmacological compound triggered mitophagy and ROS accumulation culminating with lipid peroxidation and apoptosis-independent cell death. WJ460 caused a reduction of the abundance of ferroptosis core regulators xc- cystine/glutamate transporter and GPX-4. Mitophagy inhibitor Mdivi1 and iron chelators inhibited the myoferlin-related ROS production and restored cell growth. Additionally, we reported a synergic effect between ferroptosis inducers, erastin and RSL3, and WJ460.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos , Mitofagia , Pâncreas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Sci Transl Med ; 14(631): eabh3763, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138910

RESUMO

The Wolfram syndrome is a rare autosomal recessive disease affecting many organs with life-threatening consequences; currently, no treatment is available. The disease is caused by mutations in the WSF1 gene, coding for the protein wolframin, an endoplasmic reticulum (ER) transmembrane protein involved in contacts between ER and mitochondria termed as mitochondria-associated ER membranes (MAMs). Inherited mutations usually reduce the protein's stability, altering its homeostasis and ultimately reducing ER to mitochondria calcium ion transfer, leading to mitochondrial dysfunction and cell death. In this study, we found that activation of the sigma-1 receptor (S1R), an ER-resident protein involved in calcium ion transfer, could counteract the functional alterations of MAMs due to wolframin deficiency. The S1R agonist PRE-084 restored calcium ion transfer and mitochondrial respiration in vitro, corrected the associated increased autophagy and mitophagy, and was able to alleviate the behavioral symptoms observed in zebrafish and mouse models of the disease. Our findings provide a potential therapeutic strategy for treating Wolfram syndrome by efficiently boosting MAM function using the ligand-operated S1R chaperone. Moreover, such strategy might also be relevant for other degenerative and mitochondrial diseases involving MAM dysfunction.


Assuntos
Receptores sigma , Síndrome de Wolfram , Animais , Cálcio/metabolismo , Feminino , Humanos , Masculino , Camundongos , Receptores sigma/agonistas , Peixe-Zebra/metabolismo , Receptor Sigma-1
12.
EMBO Mol Med ; 14(3): e14764, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35014179

RESUMO

Despite the clinical benefit of androgen-deprivation therapy (ADT), the majority of patients with advanced prostate cancer (PCa) ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we identified thioesterase superfamily member 6 (THEM6) as a marker of ADT resistance in PCa. THEM6 deletion reduces in vivo tumour growth and restores castration sensitivity in orthograft models of CRPC. Mechanistically, we show that the ER membrane-associated protein THEM6 regulates intracellular levels of ether lipids and is essential to trigger the induction of the ER stress response (UPR). Consequently, THEM6 loss in CRPC cells significantly alters ER function, reducing de novo sterol biosynthesis and preventing lipid-mediated activation of ATF4. Finally, we demonstrate that high THEM6 expression is associated with poor survival and correlates with high levels of UPR activation in PCa patients. Altogether, our results highlight THEM6 as a novel driver of therapy resistance in PCa as well as a promising target for the treatment of CRPC.


Assuntos
Antagonistas de Androgênios , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia
13.
Nat Commun ; 12(1): 6648, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789764

RESUMO

The U6 snRNA, the core catalytic component of the spliceosome, is extensively modified post-transcriptionally, with 2'-O-methylation being most common. However, how U6 2'-O-methylation is regulated remains largely unknown. Here we report that TFIP11, the human homolog of the yeast spliceosome disassembly factor Ntr1, localizes to nucleoli and Cajal Bodies and is essential for the 2'-O-methylation of U6. Mechanistically, we demonstrate that TFIP11 knockdown reduces the association of U6 snRNA with fibrillarin and associated snoRNAs, therefore altering U6 2'-O-methylation. We show U6 snRNA hypomethylation is associated with changes in assembly of the U4/U6.U5 tri-snRNP leading to defects in spliceosome assembly and alterations in splicing fidelity. Strikingly, this function of TFIP11 is independent of the RNA helicase DHX15, its known partner in yeast. In sum, our study demonstrates an unrecognized function for TFIP11 in U6 snRNP modification and U4/U6.U5 tri-snRNP assembly, identifying TFIP11 as a critical spliceosome assembly regulator.


Assuntos
Fatores de Processamento de RNA/metabolismo , Splicing de RNA/fisiologia , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Nucléolo Celular/metabolismo , Sobrevivência Celular , Corpos Enovelados/metabolismo , Células HeLa , Humanos , Metilação , Mitose , Proteínas Nucleares/metabolismo , Salpicos Nucleares/metabolismo , Ligação Proteica , Estabilidade Proteica , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética , RNA Nucleolar Pequeno/metabolismo , Spliceossomos/metabolismo
14.
PLoS Pathog ; 17(9): e1009919, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543356

RESUMO

Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Proteínas dos Retroviridae/metabolismo , Células HEK293 , Infecções por HTLV-I/etiologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Células Jurkat , Splicing de RNA , RNA Mensageiro , Fator de Processamento U2AF/metabolismo
15.
New Phytol ; 232(4): 1603-1617, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34392544

RESUMO

The coupling between mitochondrial respiration and photosynthesis plays an important role in the energetic physiology of green plants and some secondary-red photosynthetic eukaryotes (diatoms), allowing an efficient CO2 assimilation and optimal growth. Using the flagellate Euglena gracilis, we first tested if photosynthesis-respiration coupling occurs in this species harbouring secondary green plastids (i.e. originated from an endosymbiosis between a green alga and a phagotrophic euglenozoan). Second, we tested how the trophic state (mixotrophy and photoautotrophy) of the cell alters the mechanisms involved in the photosynthesis-respiration coupling. Energetic coupling between photosynthesis and respiration was determined by testing the effect of respiratory inhibitors on photosynthesis, and measuring the simultaneous variation of photosynthesis and respiration rates as a function of temperature (i.e. thermal response curves). The mechanism involved in the photosynthesis-respiration coupling was assessed by combining proteomics, biophysical and cytological analyses. Our work shows that there is photosynthesis-respiration coupling and membrane contacts between mitochondria and chloroplasts in E. gracilis. However, whereas in mixotrophy adjustment of the chloroplast ATP/NADPH ratio drives the interaction, in photoautotrophy the coupling is conditioned by CO2 limitation and photorespiration. This indicates that maintenance of photosynthesis-respiration coupling, through plastic metabolic responses, is key to E. gracilis functioning under changing environmental conditions.


Assuntos
Euglena gracilis , Fotossíntese , Dióxido de Carbono , Cloroplastos , Euglena gracilis/fisiologia , Plastídeos
16.
Hear Res ; 409: 108311, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34311268

RESUMO

There is now growing evidence that hypercholesterolemia and high serum levels of low-density lipoproteins (LDL) predispose to sensorineural hearing loss. Circulating LDL-cholesterol is delivered to peripheral tissues via LDL receptor (LDLR) -mediated endocytosis. Recently, it has been shown that LDLR gene polymorphisms are associated with higher susceptibility to sudden deafness. These findings suggested that we should investigate the expression of LDLR from the postnatal maturation of the mouse cochlea until adulthood. In the cochlea of newborn mice, we observed that LDLR is mostly expressed in the lateral wall of the cochlea, especially in a band of cells directly facing the cochlear duct. Moreover, LDLR is expressed in the inner and outer hair cells, as well as in the adjacent greater epithelial ridge. In early postnatal stages, LDLR is expressed in the marginal cells of the immature stria vascularis, in the root cells of the spiral ligament, and in the adjacent outer sulcus cells. At the same time, LDLR begins to be expressed in the pillar cells of the immature organ of Corti. From the onset of hearing, LDLR is expressed in the marginal cells of the stria vascularis, in the outer sulcus cells, and in the capillaries of the adjacent spiral ligament. In the organ of Corti, LDLR is expressed in outer pillar cells and Deiters' cells, i.e. in the non-sensory supporting cells that directly surround the outer hair cells. These cells are believed to provide a mechanical coupling with the outer hair cells to modulate electromotility and cochlear amplification. In the stria vascularis of three-month-old mice, LDLR is further expressed in both marginal and intermediate cells. Overall, our results suggest that LDLR is mostly present in cochlear cells that are involved in endolymph homeostasis and cochlear amplification. Further functional studies will be needed to unravel how LDLR regulates extracellular and intracellular levels of cholesterol and lipoproteins in the cochlea, and how it could influence cochlear homeostasis.


Assuntos
Cóclea , Endolinfa , Homeostase , Animais , Camundongos , Receptores de LDL/genética , Estria Vascular
17.
Brain Res Bull ; 174: 153-160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139316

RESUMO

Chromosome 13q deletions encompassing EFNB2, which encodes the transmembrane protein ephrin-B2, are likely to cause syndromic forms of sensorineural hearing loss of unclear origin. Thus, unravelling the pathogenic mechanisms could help to improve therapeutic strategies. In the cochlea, adjacent non-sensory epithelial cells are connected via gap junction channels, the activity of which is critical to maintain cochlear homeostasis. Here we show that ephrin-B2 promotes the assembly of connexin 30 (Cx30) gap junction plaques (GJPs) between adjacent non-sensory Deiters' cells. An in situ proximity ligation assay revealed that ephrin-B2 preferentially interacts with Cx30 in the periphery of the GJPs, i.e. where newly synthesized connexin hemichannels accrue to the GJP. Moreover, we observed that heterozygous mice encoding an Efnb2 null allele display excessive clathrin-mediated internalization of Cx30 GJPs in early postnatal stages. Finally, an in vitro organotypic assay revealed that ectopic activation of ephrin-B2 reverse signalling promotes the internalization of Cx30 GJPs. These data argue in favor of a cell-autonomous, Eph receptor-independent role of ephrin-B2 in the assembly of Cx30 GJPs. According to recent observations, early GJP degradation could certainly play a role in the pathogenic process leading to progressive sensorineural hearing loss due to Efnb2/EFNB2 haploinsufficiency.


Assuntos
Cóclea/patologia , Sinapses Elétricas/patologia , Endocitose/genética , Efrina-B2/genética , Animais , Conexina 30/biossíntese , Conexina 30/genética , Efrina-B2/farmacologia , Haploinsuficiência , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Heterozigoto , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
18.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962942

RESUMO

The endoplasmic reticulum (ER) is a central eukaryotic organelle with a tubular network made of hairpin proteins linked by hydrolysis of guanosine triphosphate nucleotides. Among posttranslational modifications initiated at the ER level, glycosylation is the most common reaction. However, our understanding of the impact of glycosylation on the ER structure remains unclear. Here, we show that exostosin-1 (EXT1) glycosyltransferase, an enzyme involved in N-glycosylation, is a key regulator of ER morphology and dynamics. We have integrated multiomics and superresolution imaging to characterize the broad effect of EXT1 inactivation, including the ER shape-dynamics-function relationships in mammalian cells. We have observed that inactivating EXT1 induces cell enlargement and enhances metabolic switches such as protein secretion. In particular, suppressing EXT1 in mouse thymocytes causes developmental dysfunctions associated with the ER network extension. Last, our data illuminate the physical and functional aspects of the ER proteome-glycome-lipidome structure axis, with implications in biotechnology and medicine.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Animais , Retículo Endoplasmático/metabolismo , Glicosilação , Mamíferos , Camundongos , Processamento de Proteína Pós-Traducional , Transporte Proteico
19.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507234

RESUMO

The hematopoietic system is highly sensitive to perturbations in the translational machinery, of which an emerging level of regulation lies in the epitranscriptomic modification of transfer RNAs (tRNAs). Here, we interrogate the role of tRNA anticodon modifications in hematopoiesis by using mouse models of conditional inactivation of Elp3, the catalytic subunit of Elongator that modifies wobble uridine in specific tRNAs. Loss of Elp3 causes bone marrow failure by inducing death in committing progenitors and compromises the grafting activity of hematopoietic stem cells. Mechanistically, Elp3 deficiency activates a p53-dependent checkpoint in what resembles a misguided amino acid deprivation response that is accompanied by Atf4 overactivation and increased protein synthesis. While deletion of p53 rescues hematopoiesis, loss of Elp3 prompts the development of p53-mutated leukemia/lymphoma, and inactivation of p53 and Elongator cooperatively promotes tumorigenesis. Specific tRNA-modifying enzymes thus condition differentiation and antitumor fate decisions in hematopoietic stem cells and progenitors.


Assuntos
Hematopoese , Histona Acetiltransferases/metabolismo , RNA de Transferência/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/deficiência , Animais , Linhagem Celular , Sobrevivência Celular , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/ultraestrutura , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Regulação para Cima
20.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498839

RESUMO

Unlike in most eukaryotic cells, the genetic information of budding yeast in the exponential growth phase is only present in the form of decondensed chromatin, a configuration that does not allow its visualization in cell nuclei conventionally prepared for transmission electron microscopy. In this work, we studied the distribution of chromatin and its relationships to the nucleolus using different cytochemical and immunocytological approaches applied to yeast cells subjected to hyperosmotic shock. Our results show that osmotic shock induces the formation of heterochromatin patches in the nucleoplasm and intranucleolar regions of the yeast nucleus. In the nucleolus, we further revealed the presence of osmotic shock-resistant DNA in the fibrillar cords which, in places, take on a pinnate appearance reminiscent of ribosomal genes in active transcription as observed after molecular spreading ("Christmas trees"). We also identified chromatin-associated granules whose size, composition and behaviour after osmotic shock are reminiscent of that of mammalian perichromatin granules. Altogether, these data reveal that it is possible to visualize heterochromatin in yeast and suggest that the yeast nucleus displays a less-effective compartmentalized organization than that of mammals.


Assuntos
Núcleo Celular/ultraestrutura , Cromatina/ultraestrutura , Pressão Osmótica , Saccharomyces cerevisiae/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Núcleo Celular/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Heterocromatina , Histocitoquímica , Microscopia Eletrônica de Transmissão , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...