Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 256: 106413, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36801178

RESUMO

Ocean acidification (OA) has important effects on the intrinsic phenotypic characteristics of many marine organisms. Concomitantly, OA can alter the extended phenotypes of these organisms by perturbing the structure and function of their associated microbiomes. It is unclear, however, the extent to which interactions between these levels of phenotypic change can modulate the capacity for resilience to OA. Here, we explored this theoretical framework assessing the influence of OA on intrinsic (immunological responses and energy reserve) and extrinsic (gut microbiome) phenotypic characteristics and the survival of important calcifiers, the edible oysters Crassostrea angulata and C. hongkongensis. After one-month exposure to experimental OA (pH 7.4) and control (pH 8.0) conditions, we found species-specific responses characterised by elevated stress (hemocyte apoptosis) and decreased survival in the coastal species (C. angulata) compared with the estuarine species (C. hongkongensis). Phagocytosis of hemocytes was not affected by OA but in vitro bacterial clearance capability decreased in both species. Gut microbial diversity decreased in C. angulata but not in C. hongkongensis. Overall, C. hongkongensis was capable of maintaining the homeostasis of the immune system and energy supply under OA. In contrast, C. angulata's immune function was suppressed, and the energy reserve was imbalanced, which might be attributed to the declined microbial diversity and the functional loss of essential bacteria in the guts. This study highlights a species-specific response to OA determined by genetic background and local adaptation, shedding light on the understanding of host-microbiota-environment interactions in future coastal acidification.


Assuntos
Crassostrea , Microbioma Gastrointestinal , Poluentes Químicos da Água , Animais , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Bactérias , Dióxido de Carbono
2.
Mol Ecol ; 32(2): 412-427, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314404

RESUMO

For marine invertebrates with a pelagic-benthic life cycle, larval exposure to ocean acidification (OA) can affect adult performance in response to another environmental stressor. This carry-over effect has the potential to alter phenotypic traits. However, the molecular mechanisms that mediate "OA"-triggered carry-over effects have not been explored despite such information being key to improving species fitness and management strategies for aquafarming. This study integrated the genome-wide DNA methylome and transcriptome to examine epigenetic modification-mediated carry-over OA impacts on phenotypic traits of the ecologically and commercially important oyster species Crassostrea hongkongensis under field conditions. Larvae of C. hongkongensis were exposed to control pH 8.0 and low pH 7.4 conditions, mimicking near future OA scenario in their habitat, before being outplanted as post-metamorphic juveniles at two mariculture field sites with contrasting environmental stressors for 9 months. The larval carry-over OA effect was found to have persistent impacts on the growth and survival trade-off traits on the outplanted juveniles, although the beneficial or adverse effect depended on the environmental conditions at the outplanted sites. Site-specific plasticity was demonstrated with a diverse DNA methylation-associated gene expression profile, with signal transduction and the endocrine system being the most common and highly enriched functions. Highly methylated exons prevailed in the key genes related to general metabolic and endocytic responses and these genes are evolutionarily conserved in various marine invertebrates in response to OA. These results suggest that oysters with prior larval exposure history to OA had the ability to trigger rapid local adaptive responses via epigenetic modification to cope with multiple stressors in the field.


Assuntos
Crassostrea , Ostrea , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Adaptação Fisiológica/genética , Crassostrea/genética , Crassostrea/metabolismo , Larva , Dióxido de Carbono/química
3.
Environ Pollut ; 317: 120813, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470456

RESUMO

The carbon dioxide induced ocean acidification (OA) process is well known to have profound effects on physiology, survival and immune responses in marine organisms, and particularly calcifiers including edible oysters. At the same time, some wild populations could develop a complex and sophisticated immune system to cope with multiple biotic and abiotic stresses, such as bacterial infections and OA, over the long period of coevolution with the environment. However, it is unclear how immunological responses and the underlying mechanisms are altered under the combined effect of OA and bacterial infection, especially in the ecologically and economically important edible oysters. Here, we collected the wild population of oyster species Crassostrea hongkongensis (the Hong Kong oyster) from their native estuarine area and carried out a bacterial challenge with the worldwide pervasive pathogen of human foodborne disease, Vibrio parahaemolyticus, to investigate the host immune responses and molecular mechanisms under the high-CO2 and low pH-driven OA conditions. The wild population had a high immune resistance to OA, but the resistance is compromised under the combined effect of OA and bacterial infection both in vivo or in vitro. We classified all transcriptomic genes based on expression profiles and functional pathways and identified the specifically switched on and off genes and pathways under combined effect. These genes and pathways were mainly involved in multiple immunological processes including pathogen recognition, immune signal transduction and effectors. This work would help understand how the immunological function and mechanism response to bacterial infection in wild populations and predict the dynamic distribution of human health-related pathogens to reduce the risk of foodborne disease under the future climate change scenario.


Assuntos
Infecções Bacterianas , Crassostrea , Animais , Humanos , Água do Mar , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Dióxido de Carbono/metabolismo
4.
Sci Total Environ ; 782: 146704, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848868

RESUMO

The majority of common edible oysters are projected to grow more slowly and have smaller impaired shells because of anthropogenic CO2-induced reductions in seawater carbonate ion concentration and pH, a process called ocean acidification (OA). Recent evidence has shown that OA has carryover effects, for example, larvae exposed to OA will also exhibit either positive or negative effects after metamorphosis. This study examined the hidden carryover effects of OA exposure during parental and larval stages on post-metamorphic traits of the commercially important oyster species Crassostrea hongkongensis. Adults of C. hongkongensis were exposed to control pH (pHNBS 8.0) and OA-induced low pH (pHNBS 7.4) conditions. Their larval offspring were then exposed to the same aquarium conditions before being out-planted as post-metamorphic juveniles at a mariculture site for 10 months. Initially, larval offspring were resilient to low pH with or without parental exposure. The larvae exposed to low pH had significantly faster development and higher percentage of settlement success compared to control groups. The out-planted juveniles with parental exposure had improved survival and growth compared to juveniles without parental exposure, regardless of the larval exposure history. This implies that transgenerational effects due to parental exposure not only persists but also have a greater influence than the within-generational effects of larval exposure. Our results shed light on the importance of linking the various life history stages when assessing the OA-induced carryover capacity of C. hongkongensis in the natural environment. Understanding these linked relationships helps us better predict the species rapid adaptation responses in the face of changing coastal conditions due to OA.


Assuntos
Crassostrea , Água do Mar , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Larva , Metamorfose Biológica , Oceanos e Mares
5.
Mar Environ Res ; 163: 105217, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33276167

RESUMO

Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.


Assuntos
Crassostrea , Animais , Dióxido de Carbono , Crassostrea/genética , Metilação de DNA , Concentração de Íons de Hidrogênio , Larva/genética , Oceanos e Mares , Água do Mar
6.
Mar Environ Res ; 163: 105214, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33221553

RESUMO

Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.


Assuntos
Crassostrea , Animais , Dióxido de Carbono , Crassostrea/genética , Metilação de DNA , Concentração de Íons de Hidrogênio , Larva/genética , Oceanos e Mares , Água do Mar
7.
Front Cell Dev Biol ; 8: 411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656204

RESUMO

Crassostrea hongkongensis (Hong Kong oyster) is an ecologically and economically valuable shellfish endemic to South/Southeast Asia. Due to ocean acidification and warming waters, they have become increasingly vulnerable to invading microbes including Vibrio parahaemolyticus, a significant foodborne human pathogen. In recent years, outbreaks of V. parahaemolyticus have emerged as a perennial phenomenon in parts of the world, necessitating to better understand the biology of host-pathogen interactions in this under-examined marine invertebrate. Although an immunologically relevant autophagy apparatus has been identified in Crassostrea gigas, an evolutionarily close mollusk cousin, the precise mechanistic details of C. hongkongensis autophagy during V. parahaemolyticus infection are still wanting. Here, we compellingly demonstrated that in vivo V. parahaemolyticus challenge robustly triggered autophagic signaling in C. hongkongensis hemocytes peaking at 6 h post-infection, which subsequently promoted bacterial clearance and dampened premature apoptosis. Simultaneously, a large surplus of adenosine monophosphate (AMP) and elevations in reactive oxygen species (ROS, specifically mitochondrial O2 - and cellular H2O2) formation were observed post-infection. Extrinsically applied AMP and ROS could synergistically induce AMP-activated protein kinase (AMPK) phosphorylation to stimulate downstream autophagic events. V. parahaemolyticus infection-induced autophagy was pharmacologically shown to be AMPK-dependent in vivo. Overall, our results establish autophagy as a crucial arm of host defense against Vibrio infections in mollusks, and provide new insights into the underappreciated roles of ROS and AMP as co-regulators of autophagy.

8.
Mar Environ Res ; 141: 66-74, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30115535

RESUMO

Anthropogenically-induced ocean acidification (OA) scenarios of decreased pH and altered carbonate chemistry are threatening the fitness of coastal species and hence near-shore ecosystems' biodiversity. Differential tolerances to OA between species at different trophic levels, for example, may alter species interactions and impact community stability. Here we evaluate the effect of OA on the larval stages of the rock oyster, Saccostrea cucullata, a dominant Indo-Pacific ecosystem engineer, and its key predator, the whelk, Reishia clavigera. pH as low as 7.4 had no significant effect on mortality, abnormality or growth of oyster larvae, whereas whelk larvae exposed to pH 7.4 experienced increased mortality (up to ∼30%), abnormalities (up to 60%) and ∼3 times higher metabolic rates compared to controls. Although these impacts' long-term consequences are yet to be investigated, greater vulnerability of whelk larvae to OA could impact predation rates on intertidal rocky shores, and have implications for subsequent community dynamics.


Assuntos
Ecossistema , Ostreidae , Água do Mar , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Larva , Ostreidae/crescimento & desenvolvimento , Comportamento Predatório
9.
J R Soc Interface ; 15(140)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514985

RESUMO

Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala, here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Biomiméticos/química , Myrtales , Folhas de Planta , Polímeros/química , Propriedades de Superfície
10.
J Vis Exp ; (120)2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28287558

RESUMO

Characterizing the first event of biological production of calcium carbonate requires a combination of microscopy approaches. First, intracellular pH distribution and calcium ions can be observed using live microscopy over time. This allows identification of the life stage and the tissue with the feature of interest for further electron microscopy studies. Life stage and tissues of interest are typically higher in pH and Ca signals. Here, using H. elegans, we present a protocol to characterize the presence of calcium carbonate structures in a biological specimen on the scanning electron microscope (SEM), using energy-dispersive X-ray spectroscopy (EDS) to visualize elemental composition, using electron backscatter diffraction (EBSD) to determine the presence of crystalline structures, and using transmission electron microscopy (TEM) to analyze the composition and structure of the material. In this protocol, a focused ion beam (FIB) is used to isolate samples with dimension suitable for TEM analysis. As FIB is a site specific technique, we demonstrate how information from the previous techniques can be used to identify the region of interest, where Ca signals are highest.


Assuntos
Calcinose/diagnóstico por imagem , Microscopia Eletrônica de Transmissão/métodos , Animais , Larva/ultraestrutura , Espectrometria por Raios X
11.
Glob Chang Biol ; 22(6): 2054-68, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26990129

RESUMO

The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.


Assuntos
Adaptação Fisiológica , Mudança Climática , Crassostrea/fisiologia , Metamorfose Biológica , Proteoma/fisiologia , Animais , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Larva/fisiologia , Salinidade , Água do Mar/química , Estresse Fisiológico , Espectrometria de Massas em Tandem , Temperatura
12.
Bioinformation ; 12(5): 266-278, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28246460

RESUMO

Oysters are economically and ecologically important bivalves, with its calcareous shell and delicious meat. The shell composition is a blend of inorganic crystals and shell proteins that form an organic matrix which protects the soft inner tissue of the oyster. The objective of the study was to compare the composition of organic matrix proteins (OMP) of two phylogenetically related species: the Hong Kong oyster (Crassostrea hongkongensis) and the Portuguese oyster (Crassostrea angulata) which differ in their shell hardness and mechanical properties. C. hongkongensis shells are comparatively stronger than C. angulata. Modern shotgun proteomics has been used to understand the nature of the OMP and the variations observed in the mechanical properties of these two species of oyster shells. After visualizing proteins on the one (1DE) and two-dimensional electrophoresis (2DE) gels, the protein spots and their intensities were compared using PDQuest software and 14 proteins of C. hongkongensis were found to be significantly different (student׳s t-test; p<0.05) when compared to the C. angulata. Furthermore, shell OMP separated on 1DE gels were processed using Triple TOF5600 mass spectrometry and 42 proteins of C. hongkongensis and 37 of C. angulata identified. A Circos based comparative analysis of the shell proteins of both oyster species were prepared against the shell proteome of other shell forming gastropods and molluscs to study the evolutionary conservation of OMP and their function. This comparative proteomics expanded our understating of the molecular mechanism behind the shells having different hardness and mechanical properties.

13.
Proteomics ; 15(23-24): 4120-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26507238

RESUMO

Decreasing pH due to anthropogenic CO2 inputs, called ocean acidification (OA), can make coastal environments unfavorable for oysters. This is a serious socioeconomical issue for China which supplies >70% of the world's edible oysters. Here, we present an iTRAQ-based protein profiling approach for the detection and quantification of proteome changes under OA in the early life stage of a commercially important oyster, Crassostrea hongkongensis. Availability of complete genome sequence for the pacific oyster (Crassostrea gigas) enabled us to confidently quantify over 1500 proteins in larval oysters. Over 7% of the proteome was altered in response to OA at pHNBS 7.6. Analysis of differentially expressed proteins and their associated functional pathways showed an upregulation of proteins involved in calcification, metabolic processes, and oxidative stress, each of which may be important in physiological adaptation of this species to OA. The downregulation of cytoskeletal and signal transduction proteins, on the other hand, might have impaired cellular dynamics and organelle development under OA. However, there were no significant detrimental effects in developmental processes such as metamorphic success. Implications of the differentially expressed proteins and metabolic pathways in the development of OA resistance in oyster larvae are discussed. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD002138 (http://proteomecentral.proteomexchange.org/dataset/PXD002138).


Assuntos
Adaptação Fisiológica/genética , Crassostrea/fisiologia , Proteômica , Animais , Crassostrea/genética , Crassostrea/metabolismo , Larva/metabolismo , Proteoma
14.
Ecology ; 96(1): 3-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236884

RESUMO

Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other human-induced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification's consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer-resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification'and the ecological changes it portends.


Assuntos
Mudança Climática , Ecologia , Ecossistema , Oceanos e Mares , Água do Mar/química , Aclimatação , Animais , Modelos Biológicos
15.
Sci Rep ; 5: 10847, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26039184

RESUMO

The uptake of anthropogenic CO2 emissions by oceans has started decreasing pH and carbonate ion concentrations of seawater, a process called ocean acidification (OA). Occurring over centuries and many generations, evolutionary adaptation and epigenetic transfer will change species responses to OA over time. Trans-generational responses, via genetic selection or trans-generational phenotypic plasticity, differ depending on species and exposure time as well as differences between individuals such as gender. Males and females differ in reproductive investment and egg producing females may have less energy available for OA stress responses. By crossing eggs and sperm from the calcareous tubeworm Hydroides elegans (Haswell, 1883) raised in ambient (8.1) and low (7.8) pH environments, we observed that paternal and maternal low pH experience had opposite and additive effects on offspring. For example, when compared to offspring with both parents from ambient pH, growth rates of offspring of fathers or mothers raised in low pH were higher or lower respectively, but there was no difference when both parents were from low pH. Gender differences may result in different selection pressures for each gender. This may result in overestimates of species tolerance and missed opportunities of potentially insightful comparisons between individuals of the same species.


Assuntos
Concentração de Íons de Hidrogênio , Poliquetos , Animais , Feminino , Larva , Estágios do Ciclo de Vida , Masculino , Água do Mar
16.
J Struct Biol ; 189(3): 230-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25600412

RESUMO

The serpulid tubeworm, Hydroides elegans, is an ecologically and economically important species whose biology has been fairly well studied, especially in the context of larval development and settlement on man-made objects (biofouling). Nevertheless, ontogenetic changes associated with calcareous tube composition and structures have not yet been studied. Here, the ultrastructure and composition of the calcareous tubes built by H. elegans was examined in the three early calcifying juvenile stages and in the adult using XRD, FTIR, ICP-OES, SEM and Raman spectroscopy. Ontogenetic shifts in carbonate mineralogy were observed, for example, juvenile tubes contained more amorphous calcium carbonate and were predominantly aragonitic whereas adult tubes were bimineralic with considerably more calcite. The mineral composition gradually shifted during the tube development as shown by a decrease in Sr/Ca and an increase of Mg/Ca ratios with the tubeworm's age. The inner tube layer contained calcite, whereas the outer layer contained aragonite. Similarly, the tube complexity in terms of ultrastructure was associated with development. The sequential appearance of unoriented ultrastructures followed by oriented ultrastructures may reflect the evolutionary history of serpulid tube biominerals. As aragonitic structures are more susceptible to dissolution under ocean acidification (OA) conditions but are more difficult to be removed by anti-fouling treatments, the early developmental stages of the tubeworms may be vulnerable to OA but act as the important target for biofouling control.


Assuntos
Poliquetos/fisiologia , Poliquetos/ultraestrutura , Animais , Incrustação Biológica , Cálcio/análise , Carbonato de Cálcio/análise , Embrião não Mamífero , Feminino , Magnésio/análise , Masculino , Metamorfose Biológica , Microscopia Eletrônica de Varredura , Poliquetos/embriologia , Poliquetos/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
17.
Environ Sci Technol ; 48(24): 14158-67, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25415324

RESUMO

Many benthic marine organisms produce calcium carbonate (CaCO3) structures for mechanical protection through a biologically controlled calcification process. However, the oceans are becoming unfavorable for calcification because of the stress associated with ocean acidification (OA) and associated chemical changes such as declining saturation state of CaCO3 and decreasing seawater pH. This work studies the impacts of OA-driven decreased pH on the calcareous tubes produced by the serpulid tubeworm Hydroides elegans. Tubes grown under control and OA experimental conditions were measured for structural and mechanical properties, and their mechanical properties were further interpreted using finite element analysis (FEA). The near-future predicted pH value of 7.8 altered tube ultrastructure, volume, and density and decreased the mean tube hardness and elasticity by ∼ 80 and ∼ 70%, respectively. The crushing force required for breaking the tube was reduced by 64%. The FEA results demonstrated how a simulated predator attack may affect the structure with different structural and mechanical properties and consequently shift the stress development and distribution in the tubes, causing a more concentrated stress distribution and therefore leading to a lower ability to withstand attacks.


Assuntos
Fenômenos Biomecânicos , Carbonato de Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Poliquetos/fisiologia , Poliquetos/ultraestrutura , Água do Mar/química , Animais , Calcificação Fisiológica , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Poliquetos/química , Microtomografia por Raio-X
18.
Mar Pollut Bull ; 86(1-2): 154-160, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25110053

RESUMO

Elevated anthropogenic pCO2 can delay growth and impair otolith structure and function in the larvae of some fishes. These effects may concurrently alter the larva's proteome expression pattern. To test this hypothesis, Atlantic herring larvae were exposed to ambient (370 µatm) and elevated (1800 µatm) pCO2 for one-month. The proteome structure of the larvae was examined using a 2-DE and mass spectrometry. The length of herring larvae was marginally less in the elevated pCO2 treatment compared to the control. The proteome structure was also different between the control and treatment, but only slightly: the expression of a small number of proteins was altered by a factor of less than 2-fold at elevated pCO2. This comparative proteome analysis suggests that the proteome of herring larvae is resilient to elevated pCO2. These observations suggest that herring larvae can cope with levels of CO2 projected for near future without significant proteome-wide changes.


Assuntos
Dióxido de Carbono/farmacologia , Peixes/metabolismo , Membrana dos Otólitos/efeitos dos fármacos , Proteoma/metabolismo , Animais , Mudança Climática , Peixes/anatomia & histologia , Peixes/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo
19.
Environ Sci Technol ; 48(17): 10079-88, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25014366

RESUMO

Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.


Assuntos
Ácidos/química , Crassostrea/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Salinidade , Temperatura , Análise de Variância , Animais , Carbonatos/química , Concentração de Íons de Hidrogênio , Larva/crescimento & desenvolvimento , Microscopia de Fluorescência , Oceano Pacífico , Água do Mar/química
20.
Sci Rep ; 4: 4189, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24577050

RESUMO

Vermetids form reefs in sub-tropical and warm-temperate waters that protect coasts from erosion, regulate sediment transport and accumulation, serve as carbon sinks and provide habitat for other species. The gastropods that form these reefs brood encapsulated larvae; they are threatened by rapid environmental changes since their ability to disperse is very limited. We used transplant experiments along a natural CO2 gradient to assess ocean acidification effects on the reef-building gastropod Dendropoma petraeum. We found that although D. petraeum were able to reproduce and brood at elevated levels of CO2, recruitment success was adversely affected. Long-term exposure to acidified conditions predicted for the year 2100 and beyond caused shell dissolution and a significant increase in shell Mg content. Unless CO2 emissions are reduced and conservation measures taken, our results suggest these reefs are in danger of extinction within this century, with significant ecological and socioeconomic ramifications for coastal systems.


Assuntos
Dióxido de Carbono/metabolismo , Recifes de Corais , Gastrópodes/fisiologia , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Movimentos da Água , Água/química , Animais , Dióxido de Carbono/análise , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...