Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(5): e2305366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38054210

RESUMO

Quantifying the intrinsic properties of 2D materials is of paramount importance for advancing their applications. Large-scale production of 2D materials merits the need for approaches that provide direct information about the role of growth substrate on 2D material properties. Transferring the 2D material from its growth substrates can modify the intrinsic properties of the asgrown 2D material. In this study, suspended chemical vapor deposition (CVD) graphene films are prepared directly on their growth substrates in a high-density grid array. The approach facilitates the quantification of intrinsic strain and doping in suspended CVD graphene films. To achieve this, transmission electron microscopy and large-area Raman mapping are employed. Remarkably, the analysis reveals consistent patterns of compressive strain (≈-0.2%) both in the diffraction patterns and Raman maps obtained from these suspended graphene films. By conducting investigations directly on the growth substrates, the potential influences introduced during the transfer process are circumvented effectively. Consequently, the methodology offers a robust and reliable means of studying the intrinsic properties of 2D materials in their authentic form, uninfluenced by the transfer-induced alterations that may skew the interpretation of their properties.

2.
ACS Omega ; 8(30): 27697-27702, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546614

RESUMO

One-dimensional nanostructures such as carbon nanotubes offer excellent properties useful for applications in gas sensors, piezoresistive devices, and radio frequency resonators. Considering their nanoscale form factor, carbon nanotubes (CNTs) are highly sensitive to surface adsorbents. This study presents the fabrication flow of CNT devices with extended passivated areas around electrical contacts between the CNT and source and drain electrodes. These types of structures could help in understanding the intrinsic CNT response by eliminating the analyte impact on the Schottky barrier regions of the CNT field-effect transistors (CNTFETs). The influence of multiple processing conditions on the electronic properties of CNTFETs with a suspended individual CNT used as the CNTFET channel is presented. Our findings show a threshold voltage shift in CNT ISD-Vg characteristics following the metal deposition and alumina atomic layer deposition.

3.
ACS Appl Mater Interfaces ; 15(31): 37756-37763, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490848

RESUMO

High-field-effect mobility and the two-dimensional nature of graphene films make it an interesting material for developing sensing applications with high sensitivity and low power consumption. The chemical vapor deposition process allows for producing high-quality graphene films in a scalable manner. Considering the significant impact of the underlying substrate on the graphene device performance, methods to enhance the field-effect mobility are highly desired. This work demonstrates a simplified fabrication process to develop suspended, two-terminal chemical vapor deposition (CVD) graphene devices with enhanced field-effect mobility operating at room temperature. Enhanced hole field-effect mobility of up to ∼4.8 × 104 cm2/Vs and average hole mobility >1 × 104 cm2/Vs across all of the devices is demonstrated. A gradual increase in the width of the graphene device resulted in the increase of the full width at half-maximum (FWHM) of field-effect characteristics and a decrease in the field-effect mobility. Our work presents a simplified fabrication approach to realize high-mobility suspended CVD graphene devices, beneficial for developing CVD graphene-related applications.

4.
Microsyst Nanoeng ; 8: 10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35087682

RESUMO

Customizable, portable, battery-operated, wireless platforms for interfacing high-sensitivity nanoscale sensors are a means to improve spatiotemporal measurement coverage of physical parameters. Such a platform can enable the expansion of IoT for environmental and lifestyle applications. Here we report a platform capable of acquiring currents ranging from 1.5 nA to 7.2 µA full-scale with 20-bit resolution and variable sampling rates of up to 3.125 kSPS. In addition, it features a bipolar voltage programmable in the range of -10 V to +5 V with a 3.65 mV resolution. A Finite State Machine steers the system by executing a set of embedded functions. The FSM allows for dynamic, customized adjustments of the nanosensor bias, including elevated bias schemes for self-heating, measurement range, bandwidth, sampling rate, and measurement time intervals. Furthermore, it enables data logging on external memory (SD card) and data transmission over a Bluetooth low energy connection. The average power consumption of the platform is 64.5 mW for a measurement protocol of three samples per second, including a BLE advertisement of a 0 dBm transmission power. A state-of-the-art (SoA) application of the platform performance using a CNT nanosensor, exposed to NO2 gas concentrations from 200 ppb down to 1 ppb, has been demonstrated. Although sensor signals are measured for NO2 concentrations of 1 ppb, the 3σ limit of detection (LOD) of 23 ppb is determined (1σ: 7 ppb) in slope detection mode, including the sensor signal variations in repeated measurements. The platform's wide current range and high versatility make it suitable for signal acquisition from resistive nanosensors such as silicon nanowires, carbon nanotubes, graphene, and other 2D materials. Along with its overall low power consumption, the proposed platform is highly suitable for various sensing applications within the context of IoT.

5.
ACS Appl Mater Interfaces ; 13(7): 9134-9142, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33573369

RESUMO

Aromatic molecules such as pyrenes are a unique class of building units for graphene functionalization, forming highly ordered π-π stacks while peptides provide more complex, biocompatible linkers. Understanding the adsorption and stacking behavior of these molecules and their influence on material properties is an essential step in enabling highly repeatable 2D material-based applications, such as biosensors, gas sensors, and solar cells. In this work, we characterize pyrene and peptide self-assembly on graphene substrates using fluorescence microscopy, atomic force microscopy and electrolyte-gated field-effect measurements supported by quantum mechanical calculations. We find distinct binding and assembly modes for pyrenes versus peptides with corresponding distinct electronic signatures in their characteristic charge neutrality point and field-effect slope responses. Our data demonstrates that pyrene- and peptide-based self-assembly platforms can be highly beneficial for precisely customizing graphene electronic properties for desired device technologies such as transport-based biosensing graphene field-effect transistors.


Assuntos
Grafite/química , Peptídeos/química , Pirenos/química , Transistores Eletrônicos , Eletrólitos/química , Elétrons , Microscopia de Força Atômica , Microscopia de Fluorescência , Imagem Óptica , Tamanho da Partícula , Peptídeos/síntese química , Pirenos/síntese química , Propriedades de Superfície
6.
Nanoscale ; 9(44): 17312-17317, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29091090

RESUMO

We report on the characterization of the electrical breakdown (EB) process for the formation of tunneling nanogaps in single-layer graphene. In particular, we investigated the role of oxygen in the breakdown process by varying the environmental conditions (vacuum and ambient conditions). We show that the density of oxygen molecules in the chamber is a crucial parameter that defines the physical breakdown process: at low density, the graphene lattice is sublimating, whereas at high density, the process involved is oxidation, independent of the substrate material. To estimate the activation energies of the two processes, we use a scheme which consists of applying voltage pulses across the junction during the breakdown. By systematically varying the voltage pulse length, and estimating the junction temperature from a 1D thermal model, we extract activation energies which are consistent with the sublimation of graphene under high vacuum and the electroburning process under air. Our study demonstrates that, in our system, a better control of the gap formation is achieved in the sublimation regime.

7.
ACS Appl Mater Interfaces ; 9(29): 25014-25022, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28675296

RESUMO

Chemical vapor deposition (CVD) is a powerful technique to produce graphene for large-scale applications. Polymer-assisted wet transfer is commonly used to move the graphene onto silicon substrates, but the resulting devices tend to exhibit p-doping, which decreases the device quality and reproducibility. In an effort to better understand the origin of this effect, we coated graphene with n-methyl-2-pyrrolidone (NMP) and hexamethyldisilazane (HMDS) molecules that exhibit negligible charge transfer to graphene but bind more strongly to graphene than ambient adsorbents. Using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), electrical transport measurements, and quantum mechanical computer simulations, we show that the molecules help in the removal of p-doping, and our data indicate that the molecules do this by replacing ambient adsorbents (typically O2 and water) on the graphene surface. This very simple method of improving the electronic properties of CVD graphene by passivating its surface with common solvent molecules will accelerate the development of CVD graphene-based devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA