Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
OMICS ; 13(5): 421-30, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19594376

RESUMO

Development of novel vaccines and therapeutics often requires efficient expression of recombinant viral proteins. Here we show that mutations in essential functional regions of conserved influenza proteins NP and NS1, lead to reduced expression of these genes in vitro. According to in silico analysis, these mRNA regions possess distinct secondary structures sensitive to mutations. We identified a novel structural feature within a region in NS1 mRNA that encodes amino acids essential for NS1 function. Mutations altering this mRNA element lead to significantly reduced protein expression. Conversely, expression was not affected by mutations resulting in amino acid substitutions, when they were designed to preserve this secondary RNA structural element. Furthermore, altering this structure significantly reduced RNA transcription without affecting mRNA stability. Therefore, distinct internal secondary structures of viral mRNA may be important for viral gene expression. If such elements encode amino acids essential for the protein function, then early selection against mutations in this region will be beneficial for the virus. This might point at yet another mechanism of viral evolution, especially for RNA viruses. Finally, introducing mutations into viral genes while preserving their secondary RNA structure, suggests a new method for the generation of efficiently expressed recombinants of viral proteins.


Assuntos
Regulação Viral da Expressão Gênica , Genes Virais , Conformação de Ácido Nucleico , RNA Mensageiro/química , Sequência de Bases , Linhagem Celular , Humanos , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
2.
OMICS ; 13(3): 211-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19441878

RESUMO

Inadvertent cytotoxicity may hinder the expression of many recombinant proteins that are of industrial or medicinal importance. Here, we show that covalent binding of the influenza A cytotoxic protein M2 to a polyglutamine domain (polyQ-M2; QM2) results in significant delay of its cytotoxic effects when compared to wild-type protein (M2wt). We also show that while expression of recombinant M2wt from A/WSN/1933 strain could not be attained in vaccinia virus (VV), polyQ-M2 was successfully expressed in this system. Moreover, we demonstrate that in cell culture, the polyQ domain is cleaved off following 48 h of expression, thus releasing free and active M2. Similarly, we show the spontaneous cleavage and polyQ release from fusion with another distinct polypeptide, green fluorescent protein (GFP). Expression of M2 from QM2 construct was more prolonged than one based on M2wt-expressing construct, markedly exceeding it at the later time points. Therefore, cell death caused by a toxic polypeptide may be suppressed via genetic fusion with polyQ, resulting in its enhanced expression, followed by slow release of the free polypeptide from the fusion. Collectively, covalent fusion with polyQ or other aggregate-forming domains presents a novel approach for industrial production of cytotoxic proteins and also holds promise for gene therapy applications.


Assuntos
Peptídeos/metabolismo , Proteínas Recombinantes de Fusão , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas da Matriz Viral/genética
3.
Int Rev Immunol ; 27(6): 392-426, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19065349

RESUMO

The constant threat of a new influenza pandemic, which may be caused by a highly pathogenic avian influenza virus, necessitates the development of a vaccine capable of providing efficient, long-term, and cost-effective protection. Proven avenues for the development of vaccines against seasonal influenza as well as novel approaches have been explored over the past decade. Whereas significant insights are consistently being made, the generation of a highly efficient and cross-protective vaccine against the future pandemic influenza strain remains as the ultimate goal in the field. In this review, we re-examine these efforts and outline the scientific, political, and economic problems that befall this area of biotechnological research.


Assuntos
Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Orthomyxoviridae/imunologia , Vacinas de DNA/imunologia , Animais , Surtos de Doenças/prevenção & controle , Humanos , Imunidade Celular , Imunoterapia Ativa/tendências , Vacinas contra Influenza/economia , Camundongos , Vacinas de DNA/economia
4.
Protein Sci ; 17(6): 1077-85, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18411420

RESUMO

It is assumed that the proteosome-processing characteristics of fusion constructs can be predicted from the sum of the proteosome sensitivity of their components. In the present study, we observed that a fusion construct consisting of proteosome-degradable proteins does not necessarily result in a proteosome-degradable chimera. Conversely, fusion of proteosome-resistant proteins may result in a proteosome-degradable composite. We previously demonstrated that conserved influenza proteins can be unified into a single fusion antigen that is protective, and that vaccination with combinations of proteosome-resistant and proteosome-degradable antigens resulted in an augmented T-cell response. In the present study we constructed proteosome-degradable mutants of conserved influenza proteins NP, M1, NS1, and M2. These were then fused into multipartite proteins in different positions. The stability and degradation profiles of these fusion constructs were demonstrated to depend on the relative position of the individual proteins within the chimeric molecule. Combining unstable sequences of either NP and M1 or NS1 and M2 resulted in either rapidly proteosome degraded or proteosome-resistant bipartite fusion mutants. However, further unification of the proteosome-degradable forms into a single four-partite fusion molecule resulted in relatively stable chimeric proteins. Conversely, the addition of proteosome-resistant wild-type M2 to proteosome-resistant NP-M1-NS1 fusion protein lead to the decreased stability of the resulting four-partite multigene products, which in one case was clearly proteosome dependent. Additionally, a highly destabilized form of M1 failed to destabilize the wild-type NP. Collectively, we did not observe any additive effect leading to proteosomal degradation/nondegradation of a multigene construct.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/metabolismo , Hidrólise , Orthomyxoviridae/metabolismo
5.
PLoS One ; 3(1): e1417, 2008 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-18197240

RESUMO

The effectiveness of recombinant vaccines encoding full-length M2 protein of influenza virus or its ectodomain (M2e) have previously been tested in a number of models with varying degrees of success. Recently, we reported a strong cytotoxic effect exhibited by M2 on mammalian cells in vitro. Here we demonstrated a decrease in protection when M2 was added to a DNA vaccination regimen that included influenza NP. Furthermore, we have constructed several fusion proteins of conserved genes of influenza virus and tested their expression in vitro and protective potential in vivo. The four-partite NP-M1-M2-NS1 fusion antigen that has M2 sequence engineered in the middle part of the composite protein was shown to not be cytotoxic in vitro. A three-partite fusion protein (consisting of NP, M1 and NS1) was expressed much more efficiently than the four-partite protein. Both of these constructs provided statistically significant protection upon DNA vaccination, with construct NP-M1-M2-NS1 being the most effective. We conclude that incorporation of M2 into a vaccination regimen may be beneficial only when its apparent cytotoxicity-linked negative effects are neutralized. The possible significance of this data for influenza vaccination regimens and preparations is discussed.


Assuntos
Morte Celular/fisiologia , Vacinas contra Influenza/imunologia , Orthomyxoviridae/fisiologia , Animais , Western Blotting , Linhagem Celular , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Plasmídeos
6.
Cell Cycle ; 6(16): 2043-7, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17700063

RESUMO

Molecules of influenza matrix protein 2 (M2) are organized in tetramers that constitute a well-conserved virion component and also form proton channels in the plasma membrane of infected cells. In this report we demonstrate that influenza M2 protein is cytopathic in vitro for mammalian cells. An M2 point-mutant (M2pm) protein was constructed that contained amino acid changes designed to block the proton channel via introduction of large hydrophobic residues. This mutant was significantly less toxic upon transient transfection in vitro than the wild-type M2 (M2wt). To assess the possible correlation between M2 cytotoxicity and its proton channel activity, we monitored changes in mitochondria membrane potential induced by M2wt and M2pm. M2wt rapidly decreased mitochondria membrane potential reflecting the transmembrane proton gradient, while M2pm was markedly less efficient. Thus, M2 is cytotoxic for mammalian cells, likely via its proton channel activity and may therefore contribute to influenza pathogenesis through this previously unknown mechanism.


Assuntos
Vírus da Influenza A/metabolismo , Proteínas da Matriz Viral/fisiologia , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Humanos , Vírus da Influenza A/genética , Potencial da Membrana Mitocondrial/fisiologia , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transfecção , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética
7.
Influenza Other Respir Viruses ; 1(2): 71-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18784792

RESUMO

BACKGROUND: Experimental data accumulated over more than a decade indicate that cross-strain protection against influenza may be achieved by immunization with conserved influenza proteins. At the same time, the efficacy of immunization schemes designed along these lines and involving internal influenza proteins, mostly NP and M1, has not been sufficient. OBJECTIVE: To test the immunogenicity and protective efficacy of DNA vaccination with a combination of NP, M1 and NS1 genes of influenza virus. METHODS: The immunogenicity and protective efficacy of DNA vaccination with NP, M1 and NS1 was tested in mice and chickens. Mice were challenged with mouse-adapted viral strains H3N2 and H5N2 and chicken challenged with avian H5N3 virus. RESULTS: In these settings, wild-type NS1 did not impede the cellular and humoral response to NP/M1 immunization in vivo. Moreover, addition of NS1-encoding plasmid to the NP/M1 immunization protocol resulted in a significantly increased protective efficacy in vivo. CONCLUSIONS: The addition of NS1 to an influenza immunization regimen based on conserved proteins bears promise. It is feasible that upon further genetic modification of these and additional conserved influenza proteins, providing for their higher safety, expression and immunogenicity, a recombinant vaccine based on several structural and non-structural proteins or their epitopes will offer broad anti-influenza protection in a wide range of species.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Aviária/imunologia , Proteínas de Ligação a RNA/genética , Vacinas de DNA/uso terapêutico , Proteínas do Core Viral/genética , Proteínas da Matriz Viral/genética , Proteínas não Estruturais Virais/genética , Doenças dos Animais/imunologia , Doenças dos Animais/virologia , Animais , Aves , Influenza Aviária/prevenção & controle , Camundongos , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/imunologia , Proteínas de Ligação a RNA/imunologia , Proteínas do Core Viral/imunologia , Proteínas da Matriz Viral/imunologia , Proteínas não Estruturais Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...