Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422042

RESUMO

A skewed male-to-female ratio in cattle is believed to be due to the biased embryo losses during pregnancy. The changes in biochemical secretion such as miRNAs by the embryo due to altered maternal environment could cause a sex biased selective implantation resulting in a skewed male to female ratio at birth. Nevertheless, it is still not clear whether the male and female embryos could modify their miRNA expression patterns differently in response to altered physiological developmental conditions. Therefore, this study was focused on identifying sex specific miRNA expression patterns induced in the embryo during the elongation period in response to the maternal environment. For this, in vitro produced day female and male embryos were transferred to Holsteins Frisian cows and heifers. The elongated female and male embryos were then recovered at day 13 of the gestation period. Total RNA including the miRNAs was isolated from each group of elongated embryo samples were subjected to the next generation miRNA sequencing. Sequence alignment, identification and quantification of miRNAs were done using the miRDeep2 software package and differential miRNA expression analyses were performed using the edgeR bioconductor package. The recovery rate of viable elongating embryos at day 13 of the gestation period was 26.6%. In cows, 2.8 more viable elongating male embryos were recovered than female embryos, while in heifers the sex ratio of the recovered elongating embryos was close to one (1.05). The miRNA analysis showed that 254 miRNAs were detected in both male and female elongated embryos developed either in cows or heifers, of which 14 miRNAs including bta-miR-10b, bta-miR-148a, bta-miR-26a, and bta-miR-30d were highly expressed. Moreover, the expression level of 32 miRNAs including bta-let-7c, bta-let-7b, bta-let-7g, bta-let-7d and bta-let-7e was significantly different between the male and female embryos developed in cows, but the expression level of only 4 miRNAs (bta-miR-10, bta-mR-100, bta-miR-155 and bta-miR-6119-5p) was different between the male and female embryos that were developed in heifers. Furthermore, 19 miRNAs including those involved in cellular energy homeostasis pathways were differentially expressed between the male embryos developed in cows and heifers, but no significantly differentially expressed miRNAs were detected between the female embryos of cows and heifers. Thus, this study revealed that the sex ratio skewed towards males in embryos developed in cows was accompanied by increased embryonic sexual dimorphic miRNA expression divergence in embryos developed in cows compared to those developed in heifers. Moreover, male embryos are more sensitive to respond to the maternal reproductive microenvironment by modulating their miRNA expression.


Assuntos
MicroRNAs , Reprodução , Feminino , Masculino , Gravidez , Humanos , Bovinos , Animais , Implantação do Embrião , Perda do Embrião , Embrião de Mamíferos , MicroRNAs/genética
2.
Sci Rep ; 13(1): 19408, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938581

RESUMO

The major limitation of the widespread use of IVP derived embryos is their consistent deficiencies in vitality when compared with their ex vivo derived counterparts. Although embryo metabolism is considered a useful metric of embryo quality, research connecting mitochondrial function with the developmental capacity of embryos is still lacking. Therefore, the aim of the present study was to analyse bovine embryo respiration signatures in relation to developmental capacity. This was achieved by taking advantage of two generally accepted metrics for developmental capacity: (I) environmental conditions during development (vivo vs. vitro) and (II) developmental kinetics (day 7 vs. day 8 blastocysts). Our study showed that the developmental environment affected total embryo oxygen consumption while different morphokinetics illustrating the embryo qualities correlate with maximal mitochondrial respiration, mitochondrial spare capacity, ATP-linked respiration as well as efficiency of ATP generation. This respiration fingerprint for high embryo quality is reflected by relatively lower lipid contents and relatively higher ROS contents. In summary, the results of the present study extend the existing knowledge on the relationship between bovine embryo quality and the signature of mitochondrial respiration by considering contrasting developmental environments as well as different embryo morphokinetics.


Assuntos
Blastocisto , Embrião de Mamíferos , Bovinos , Animais , Respiração , Mitocôndrias , Trifosfato de Adenosina
3.
BMC Genomics ; 24(1): 492, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641029

RESUMO

BACKGROUND: Immune traits are considered to serve as potential biomarkers for pig's health. Medium to high heritabilities have been observed for some of the immune traits suggesting genetic variability of these phenotypes. Consideration of previously established genetic correlations between immune traits can be used to identify pleiotropic genetic markers. Therefore, genome-wide association study (GWAS) approaches are required to explore the joint genetic foundation for health biomarkers. Usually, GWAS explores phenotypes in a univariate (uv), trait-by-trait manner. Besides two uv GWAS methods, four multivariate (mv) GWAS approaches were applied on combinations out of 22 immune traits for Landrace (LR) and Large White (LW) pig lines. RESULTS: In total 433 (LR: 351, LW: 82) associations were identified with the uv approach implemented in PLINK and a Bayesian linear regression uv approach (BIMBAM) software. Single Nucleotide Polymorphisms (SNPs) that were identified with both uv approaches (n = 32) were mostly associated with immune traits such as haptoglobin, red blood cell characteristics and cytokines, and were located in protein-coding genes. Mv GWAS approaches detected 647 associations for different mv immune trait combinations which were summarized to 133 Quantitative Trait Loci (QTL). SNPs for different trait combinations (n = 66) were detected with more than one mv method. Most of these SNPs are associated with red blood cell related immune trait combinations. Functional annotation of these QTL revealed 453 immune-relevant protein-coding genes. With uv methods shared markers were not observed between the breeds, whereas mv approaches were able to detect two conjoint SNPs for LR and LW. Due to unmapped positions for these markers, their functional annotation was not clarified. CONCLUSIONS: This study evaluated the joint genetic background of immune traits in LR and LW piglets through the application of various uv and mv GWAS approaches. In comparison to uv methods, mv methodologies identified more significant associations, which might reflect the pleiotropic background of the immune system more accurately. In genetic research of complex traits, the SNP effects are generally small. Furthermore, one genetic variant can affect several correlated immune traits at the same time, termed pleiotropy. As mv GWAS methods consider strong dependencies among traits, the power to detect SNPs can be boosted. Both methods revealed immune-relevant potential candidate genes. Our results indicate that one single test is not able to detect all the different types of genetic effects in the most powerful manner and therefore, the methods should be applied complementary.


Assuntos
Citocinas , Estudo de Associação Genômica Ampla , Suínos/genética , Animais , Teorema de Bayes , Fenótipo , Eritrócitos
4.
Front Genet ; 14: 1267053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327702

RESUMO

Post calving metabolic stress reduces the fertility of high producing dairy cows possibly by altering the expression of genes in the maternal environment via epigenetic modifications. Therefore, this study was conducted to identify endometrial DNA methylation marks that can be associated with pregnancy outcomes in postpartum cows at the time of breeding. For this, twelve days post-calving, cows were either offered a control diet or supplemented daily with rumen-protected methionine. Cows showing heat 50-64 days postpartum were artificially inseminated. Endometrial cytobrush samples were collected 4-8 h after artificial insemination and classified based on the pregnancy out comes as those derived from cows that resulted in pregnancy or resulted in no pregnancy. The DNAs isolated from endometrial samples were then subject to reduced representative bisulfite sequencing for DNA methylation analysis. Results showed that in the control diet group, 1,958 differentially methylated CpG sites (DMCGs) were identified between cows that resulted in pregnancy and those that resulted in no pregnancy of which 890 DMCGs were located on chr 27: 6217254-6225600 bp. A total of 537 DMCGs were overlapped with 313 annotated genes that were involved in various pathways including signal transduction, signalling by GPCR, aldosterone synthesis and secretion. Likewise, in methionine supplemented group, 3,430 CpG sites were differentially methylated between the two cow groups of which 18.7% were located on Chr27: 6217254-6225600 bp. A total of 1,781 DMCGS were overlapped with 890 genes which involved in developmental and signalling related pathways including WNT-signalling, focal adhesion and ECM receptor interaction. Interestingly, 149 genes involved in signal transduction, axon guidance and non-integrin membrane-ECM interactions were differentially methylated between the two cow groups irrespective of their feeding regime, while 453 genes involved in axon guidance, notch signalling and collagen formation were differentially methylated between cows that received rumen protected methionine and control diet irrespective of their fertility status. Overall, this study indicated that postpartum cows that could potentially become pregnant could be distinguishable based on their endometrial DNA methylation patterns at the time of breeding.

6.
J Anim Breed Genet ; 139(6): 695-709, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35904167

RESUMO

Improving the immunocompetence towards pathogens represents a desirable objective of breeding strategies to increase resilience. However, the immune system is complex and the genetic foundation of the underlying components is not yet clarified. In the present study, we focused on 22 blood parameters of 1,144 Landrace (LR) and Large White (LW) piglets at the age of 6-7 weeks. The immune profiles covered immune cells, red blood cell characteristics and cytokines. Genetic parameters based on pedigree information along with possible environmental effects were estimated. Litter effects play an important role in the expression of immune parameters of their young progenies. Hence, litter impacts on the piglet's immune profile including the immune parameters of the dam itself were investigated by different models. To incorporate the complexity of the immune network, the data were further investigated with a principal component analysis. Immune traits showed low to high breed-specific heritabilities (h2 ). Strong positive rg were estimated among red blood cell characteristics (0.77-0.99) and among cytokines (0.48-0.99). Neutrophils and lymphocytes illustrated a high negative rg (-0.96 to -0.98). The litter impact on piglet's immunity was examined and strengthened already observed breed differences. In LR, h2 (0.22-0.15) and litter effect (c2 ) (0.52-0.44) for IFN-γ decreased after statistical consideration of maternal impact. In LW, a decrease in h2 (0.32-0.18) for IFN-γ and an increase in c2 (0.54-0.56) were observed. Here, sufficient correlations were detected within various immune traits and functional biological networks of principal components. Most immune traits are heritable and are promising to cover global breed-specific immunocompetence in pigs. The analysis of immune traits has to be extended in order to find an optimal range and to characterize relationships between immunity and performance to gain an improved immune system without accidental losses in productivity.


Assuntos
Citocinas , Animais , Citocinas/genética , Feminino , Tamanho da Ninhada de Vivíparos/genética , Fenótipo , Gravidez , Suínos/genética
7.
Animals (Basel) ; 12(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681828

RESUMO

Satellite cells take an indispensable place in skeletal muscle regeneration, maintenance, and growth. However, only limited works have investigated effects of dietary compounds on the proliferation of porcine satellite cells (PSCs) and related mechanisms. Sulforaphane (SFN) at multiple levels was applied to PSCs. The PSCs' viability and HDAC activity were measured with a WST-1 cell proliferation kit and Color-de-Lys® HDAC colorimetric activity assay kit. Gene expression and epigenetics modification were tested with qRT-PCR, Western blot, bisulfite sequencing, and ChIP-qPCR. This study found that SFN enhanced PSC proliferation and altered mRNA expression levels of myogenic regulatory factors. In addition, SFN inhibited histone deacetylase (HDAC) activity, disturbed mRNA levels of HDAC family members, and elevated acetylated histone H3 and H4 abundance in PSCs. Furthermore, both mRNA and protein levels of the Smad family member 7 (SMAD7) in PSCs were upregulated after SFN treatment. Finally, it was found that SFN increased the acetylation level of histone H4 in the SMAD7 promoter, decreased the expression of microRNAs, including ssc-miR-15a, ssc-miR-15b, ssc-miR-92a, ssc-miR-17-5p, ssc-miR-20a-5p, and ssc-miR-106a, targeting SMAD7, but did not impact on the SMAD7 promoter's methylation status in PSCs. In summary, SFN was found to boost PSC proliferation and epigenetically increase porcine SMAD7 expression, which indicates a potential application of SFN in modulation of skeletal muscle growth.

8.
Sci Rep ; 12(1): 10793, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750764

RESUMO

At the embryonic level, CRISPR technologies have been used to edit genomes reliably and efficiently in various mammalian models, with Ribonucleoprotein (RNP) electroporation potentially representing a superior delivery method into mammalian zygotes. However, detailed insights of the interactions between varying technical settings as well as the time point of electroporation in a bovine zygote's cell cycle on developmental metrics and the frequency and type of editing events are largely unknown. The present study uncovers that increasing pulse lengths result in higher Full Edit rates, with Mosaicism in Full-Edit embryos being significantly affected by adjusting RNP-electroporation relative to zygote cell cycle. A considerable proportion of Full Edit embryos demonstrated loss-of-heterozygosity after RNP-electroporation prior to S-phase. Some of these loss-of-heterozygosity events are a consequence of chromosomal disruptions along large sections of the target chromosomes making it necessary to check for their presence prior use of this technique in animal breeding. One out of 2 of these loss-of-heterozygosity events, however, was not associated with loss of an entire chromosome or chromosomal sections. Whether analysed loss-of-heterozygosity in these cases, however, was a false negative result due to loss of PCR primer sequences after INDEL formation at the target side or indeed due to interhomolog recombination needs to be clarified in follow up studies since the latter would for sure offer attractive options for future breeding schedules.


Assuntos
Proteína 9 Associada à CRISPR , Zigoto , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Bovinos , Divisão Celular , Eletroporação/métodos , Edição de Genes/métodos , Mamíferos/metabolismo , Ribonucleoproteínas/metabolismo , Zigoto/metabolismo
9.
Anim Sci J ; 93(1): e13697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35233887

RESUMO

Horses lose high amounts of Na through excessive sweating. These fluid losses can often not be replaced completely by voluntary water intake, requiring saline solutions as rehydration therapy to regain electrolyte balance. The experiment aimed to evaluate the sensitivity and tolerance of Shetland ponies towards different Na concentrations in their drinking water and contained three phases: (1) control: only fresh water provided; (2) pairwise-preference test: choice between fresh water and saline solution with stepwise increasing sodium chloride (NaCl) concentration (0.25%, 0.5%, 0.75%, 1.0%, 1.25%, or 1.5%); and (3) free-choice test: six simultaneously provided buckets containing NaCl concentrations of 0%, 0.25%, 0.5%, 0.75%, 1.0%, or 1.25%. During the pairwise test, the ponies did not distinguish between fresh and 0.25% NaCl-water but demonstrated clear preference for 0.5%, whereas >0.75% NaCl was avoided/rejected. During the free-choice test, a pronounced preference of fresh over saline water was exhibited. The Na intake via salt lick was not reduced as response to higher Na intakes via water. The ponies exhibited a remarkable sensory discrimination capacity to detect different NaCl concentrations in their drinking water. The acceptance of solutions with low NaCl levels (0.25/0.5%) without adverse effects demonstrates potential as rehydration solution for voluntary intake.


Assuntos
Água Potável , Ração Animal , Animais , Ingestão de Líquidos/fisiologia , Cavalos , Sódio , Cloreto de Sódio , Cloreto de Sódio na Dieta
10.
Genet Sel Evol ; 54(1): 16, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183111

RESUMO

Next-generation sequencing is a promising approach for the detection of causal variants within previously identified quantitative trait loci. Because of the costs of re-sequencing experiments, this application is currently mainly restricted to subsets of animals from already genotyped populations. Imputation from a lower to a higher marker density could represent a useful complementary approach. An analysis of the literature shows that several strategies are available to select animals for re-sequencing. This study demonstrates an animal selection workflow under practical conditions. Our approach considers different data sources and limited resources such as budget and availability of sampling material. The workflow combines previously described approaches and makes use of genotype and pedigree information from a Landrace and Large White population. Genotypes were phased and haplotypes were accurately estimated with AlphaPhase. Then, AlphaSeqOpt was used to optimize selection of animals for re-sequencing, reflecting the existing diversity of haplotypes. AlphaSeqOpt and ENDOG were used to select individuals based on pedigree information and by taking into account key animals that represent the genetic diversity of the populations. After the best selection criteria were determined, a subset of 57 animals was selected for subsequent re-sequencing. In order to evaluate and assess the advantage of this procedure, imputation accuracy was assessed by setting a set of single nucleotide polymorphism (SNP) chip genotypes to missing. Accuracy values were compared to those of alternative selection scenarios and the results showed the clear benefits of a targeted selection within this practical-driven approach. Especially imputation of low-frequency markers benefits from the combined approach described here. Accuracy was increased by up to 12% compared to a randomized or exclusively haplotype-based selection of sequencing candidates.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Genótipo , Haplótipos , Linhagem , Suínos/genética
11.
BMC Genomics ; 22(1): 717, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610786

RESUMO

BACKGROUND: In recent years, animal welfare and health has become more and more important in pig breeding. So far, numerous parameters have been considered as important biomarkers, especially in the immune reaction and inflammation. Previous studies have shown moderate to high heritabilities in most of these traits. However, the genetic background of health and robustness of pigs needs to be extensively clarified. The objective of this study was to identify genomic regions with a biological relevance for the immunocompetence of piglets. Genome-wide Association Studies (GWAS) in 535 Landrace (LR) and 461 Large White (LW) piglets were performed, investigating 20 immune relevant traits. Besides the health indicators of the complete and differential blood count, eight different cytokines and haptoglobin were recorded in all piglets and their biological dams to capture mediating processes and acute phase reactions. Additionally, all animals were genotyped using the Illumina PorcineSNP60v2 BeadChip. RESULTS: In summary, GWAS detected 25 genome-wide and 452 chromosome-wide significant SNPs associated with 17 immune relevant traits in the two maternal pig lines LR and LW. Only small differences were observed considering the maternal immune records as covariate within the statistical model. Furthermore, the study identified across- and within-breed differences as well as relevant candidate genes. In LR more significant associations and related candidate genes were detected, compared with LW. The results detected in LR and LW are partly in accordance with previously identified quantitative trait loci (QTL) regions. In addition, promising novel genomic regions were identified which might be of interest for further detailed analysis. Especially putative pleiotropic regions on SSC5, SSC12, SSC15, SSC16 and SSC17 are of major interest with regard to the interacting structure of the immune system. The comparison with already identified QTL gives indications on interactions with traits affecting piglet survival and also production traits. CONCLUSION: In conclusion, results suggest a polygenic and breed-specific background of immune relevant traits. The current study provides knowledge about regions with biological relevance for health and immune traits. Identified markers and putative pleiotropic regions provide first indications in the context of balancing a breeding-based modification of the porcine immune system.


Assuntos
Sistema Imunitário , Sus scrofa , Animais , Estudos de Associação Genética/veterinária , Genótipo , Fenótipo , Locos de Características Quantitativas , Sus scrofa/genética , Sus scrofa/imunologia , Suínos
12.
Biology (Basel) ; 10(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072812

RESUMO

Inflammation is regulated by epigenetic modifications, including DNA methylation and histone acetylation. Sulforaphane (SFN), a histone deacetylase (HDAC) inhibitor, is also a potent immunomodulatory agent, but its anti-inflammatory functions through epigenetic modifications remain unclear. Therefore, this study aimed to investigate the epigenetic effects of SFN in maintaining the immunomodulatory homeostasis of innate immunity during acute inflammation. For this purpose, SFN-induced epigenetic changes and expression levels of immune-related genes in response to lipopolysaccharide (LPS) stimulation of monocyte-derived dendritic cells (moDCs) were analyzed. These results demonstrated that SFN inhibited HDAC activity and caused histone H3 and H4 acetylation. SFN treatment also induced DNA demethylation in the promoter region of the MHC-SLA1 gene, resulting in the upregulation of Toll-like receptor 4 (TLR4), MHC-SLA1, and inflammatory cytokines' expression at 6 h of LPS stimulation. Moreover, the protein levels of cytokines in the cell culture supernatants were significantly inhibited by SFN pre-treatment followed by LPS stimulation in a time-dependent manner, suggesting that inhibition of HDAC activity and DNA methylation by SFN may restrict the excessive inflammatory cytokine availability in the extracellular environment. We postulate that SFN may exert a protective and anti-inflammatory function by epigenetically influencing signaling pathways in experimental conditions employing porcine moDCs.

13.
BMC Genomics ; 22(1): 408, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082721

RESUMO

BACKGROUND: Morphological evaluation of embryos has been used to screen embryos for transfer. However, the repeatability and accuracy of this method remains low. Thus, evaluation of an embryo's gene expression signature with respect to its developmental capacity could provide new opportunities for embryo selection. Since the gene expression outline of an embryo is considered as an aggregate of its intrinsic characteristics and culture conditions, we have compared transcriptome profiles of in vivo and in vitro derived blastocysts in relation to pregnancy outcome to unravel the discrete effects of developmental competence and environmental conditions on bovine embryo gene expression outlines. To understand whether the gene expression patterns could be associated with blastocyst developmental competency, the global transcriptome profile of in vivo (CVO) and in vitro (CVT) derived competent blastocysts that resulted in pregnancy was investigated relative to that of in vivo (NVO) and in vitro (NVT) derived blastocysts which did not establish initial pregnancy, respectively while to unravel the effects of culture condition on the transcriptome profile of embryos, the transcriptional activity of the CVO group was compared to the CVT group and the NVO group was compared to the NVT ones. RESULTS: A total of 700 differentially expressed genes (DEGs) were identified between CVO and NVO blastocysts. These gene transcripts represent constitutive regions, indel variants, 3'-UTR sequence variants and novel transcript regions. The majority (82%) of these DEGs, including gene clusters like ATP synthases, eukaryotic translation initiation factors, ribosomal proteins, mitochondrial ribosomal proteins, NADH dehydrogenase and cytochrome c oxidase subunits were enriched in the CVO group. These DEGs were involved in pathways associated with glycolysis/glycogenesis, citrate acid cycle, pyruvate metabolism and oxidative phosphorylation. Similarly, a total of 218 genes were differentially expressed between CVT and NVT groups. Of these, 89%, including TPT1, PDIA6, HSP90AA1 and CALM, were downregulated in the CVT group and those DEGs were overrepresented in pathways related to protein processing, endoplasmic reticulum, spliceasome, ubiquitone mediated proteolysis and steroid biosynthesis. On the other hand, although both the CVT and CVO blastocyst groups resulted in pregnancy, a total of 937 genes were differential expressed between the two groups. Compared to CVO embryos, the CVT ones exhibited downregulation of gene clusters including ribosomal proteins, mitochondrial ribosomal protein, eukaryotic translation initiation factors, ATP synthases, NADH dehydrogenase and cytochrome c oxidases. Nonetheless, downregulation of these genes could be associated with pre and postnatal abnormalities observed after transfer of in vitro embryos. CONCLUSION: The present study provides a detailed inventory of differentially expressed gene signatures and pathways specifically reflective of the developmental environment and future developmental capacities of bovine embryos suggesting that transcriptome activity observed in blastocysts could be indicative of further pregnancy success but also adaptation to culture environment.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Animais , Bovinos , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gravidez , Transcriptoma
14.
Cell Tissue Res ; 385(3): 769-783, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34008050

RESUMO

Transcription factors (TFs) are known to be involved in regulating the expression of several classes of genes during folliculogenesis. However, the regulatory role of TFs during oxidative stress (OS) is not fully understood. The current study was aimed to investigate the regulation of the TFs in bovine granulosa cells (bGCs) during exposure to OS induced by H2O2 in vitro. For this, bGCs derived from ovarian follicles were cultured in vitro till their confluency and then treated with H2O2 for 40 min. Twenty-four hours later, cells were subjected to various phenotypic and gene expression analyses for genes related to TFs, endoplasmic reticulum stress, apoptosis, cell proliferation, and differentiation markers. The bGCs exhibited higher reactive oxygen species accumulation, DNA fragmentation, and endoplasmic reticulum stress accompanied by reduction of mitochondrial activity after exposure to OS. In addition, higher lipid accumulation and lower cell proliferation were noticed in H2O2-challenged cells. The mRNA level of TFs including NRF2, E2F1, KLF6, KLF9, FOS, SREBF1, SREBF2, and NOTCH1 was increased in H2O2-treated cells compared with non-treated controls. However, the expression level of KLF4 and its downstream gene, CCNB1, were downregulated in the H2O2-challenged group. Moreover, targeted inhibition of NRF2 using small interference RNA resulted in reduced expression of KLF9, FOS, SREBF2, and NOTCH1 genes, while the expression of KLF4 was upregulated. Taken together, bovine granulosa cells exposed to OS exhibited differential expression of various transcription factors, which are mediated by the NRF2 signaling pathway.


Assuntos
Células da Granulosa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Bovinos , Feminino , Transdução de Sinais , Transfecção
15.
Animals (Basel) ; 11(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477702

RESUMO

The surgical castration of young male piglets without anesthesia is no longer allowed in Germany from 2021. One alternative is breeding against boar taint, but shared synthesis pathways of androstenone (AND) and several endocrine fertility parameters (EFP) indicate a risk of decreasing fertility. The objective of this study was to investigate the genetic background between AND, skatole (SKA), and six EFP in purebred Landrace (LR) and Large White (LW) populations. The animals were clustered according to their genetic relatedness because of their different origins. Estimated heritabilities (h2) of AND and SKA ranged between 0.52 and 0.34 in LR and LW. For EFP, h2 differed between the breeds except for follicle-stimulating hormone (FSH) (h2: 0.28-0.37). Both of the breeds showed unfavorable relationships between AND and testosterone, 17-ß estradiol, and FSH. The genetic relationships (rg) between SKA and EFP differed between the breeds. A genome-wide association analysis revealed 48 significant associations and confirmed a region for SKA on S us S crofa chromosome (SSC) 14. For EFP, the results differed between the clusters. In conclusion, rg partly confirmed physiologically expected antagonisms between AND and EFP. Particular attention should be spent on fertility traits that are based on EFP when breeding against boar taint to balance the genetic progress in both of the trait complexes.

16.
BMC Genet ; 21(1): 61, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513168

RESUMO

BACKGROUND: Due to ethical reasons, surgical castration of young male piglets in their first week of life without anesthesia will be banned in Germany from 2021. Breeding against boar taint is already implemented in sire breeds of breeding organizations but in recent years a low demand made this trait economically less important. The objective of this study was to estimate heritabilities and genetic relationships between boar taint compounds androstenone and skatole and maternal/paternal reproduction traits in 4'924 Landrace (LR) and 4'299 Large White (LW) animals from nucleus populations. Additionally, genome wide association analysis (GWAS) was performed per trait and breed to detect SNP marker with possible pleiotropic effects that are associated with boar taint and fertility. RESULTS: Estimated heritabilities (h2) were 0.48 (±0.08) for LR (0.39 ± 0.07 for LW) for androstenone and 0.52 (±0.08) for LR (0.32 ± 0.07 for LW) for skatole. Heritabilities for reproduction did not differ between breeds except age at first insemination (LR: h2 = 0.27 (±0.05), LW: h2 = 0.34 (±0.05)). Estimates of genetic correlation (rg) between boar taint and fertility were different in LR and LW breeds. In LR an unfavorable rg of 0.31 (±0.15) was observed between androstenone and number of piglets born alive, whereas this rg in LW (- 0.15 (±0.16)) had an opposite sign. A similar breed-specific difference is observed between skatole and sperm count. Within LR, the rg of 0.08 (±0.13) indicates no relationship between the traits, whereas the rg of - 0.37 (±0.14) in LW points to an unfavorable relationship. In LR GWAS identified QTL regions on SSC5 (21.1-22.3 Mb) for androstenone and on SSC6 (5.5-7.5 Mb) and SSC14 (141.1-141.6 Mb) for skatole. For LW, one marker was found on SSC17 at 48.1 Mb for androstenone and one QTL on SSC14 between 140.5 Mb and 141.6 Mb for skatole. CONCLUSION: Knowledge about such genetic correlations could help to balance conventional breeding programs with boar taint in maternal breeds. QTL regions with unfavorable pleiotropic effects on boar taint and fertility could have deleterious consequences in genomic selection programs. Constraining the weighting of these QTL in the genomic selection formulae may be a useful strategy to avoid physiological imbalances.


Assuntos
Cruzamento , Fertilidade/genética , Carne de Porco/análise , Suínos/genética , Androstenos/análise , Animais , Estudos de Associação Genética/veterinária , Genótipo , Alemanha , Masculino , Fenótipo , Locos de Características Quantitativas , Escatol/análise
17.
Cell Tissue Res ; 380(3): 643-655, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32185525

RESUMO

Lead (Pb), one of the pervasive and protracted environmental heavy metals, is believed to affect the female reproductive system in many species. The Nrf2 and NF-κB are the two key transcriptional factors regulating cellular redox status and response against stress and inflammation respectively, showing an interaction between each other. The aim of this study is to investigate the effect of Pb on bovine granulosa cells (GCs) and its association with the regulation of Nrf2 and NF-κB pathways. For this, bovine GCs were cultured in vitro and exposed to different doses of Pb for 2 h. Cellular response to Pb insult was investigated 24 h post treatment. Results showed that exposure of GCs to Pb-induced ROS accumulation and protein carbonylation. Additionally, GCs exhibited reduction in cell viability and decrease in the expression of cell proliferation marker genes (CCND2 and PCNA). This was accompanied by cell cycle arrest at G0/G1 phase. Moreover, Pb downregulated both Nrf2 and NF-κB and their downstream genes. Lead increased the expression of endoplasmic reticulum (ER) stress marker genes (GRP78 and CHOP) and the proapoptotic gene (caspase-3) while the antiapoptotic gene (BCL-2) was reduced. Our findings suggest that Pb-driven oxidative stress affected GCs proliferation, enhances ER stress, induces cell cycle arrest and mediates apoptosis probably via disruption of Nrf2/NF-κB cross-talk. However, further functional analysis is required to explain different aspects of Nrf2 and NF-κB interactions under metal challenge.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Células da Granulosa , Chumbo/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963271

RESUMO

The genetic codes inscribed during two key developmental processes, namely gametogenesis and embryogenesis, are believed to determine subsequent development and survival of adult life. Once the embryo is formed, its further development mainly depends on its intrinsic characteristics, maternal environment (the endometrial receptivity), and the embryo-maternal interactions established during each phase of development. These developmental processes are under strict genetic regulation that could be manifested temporally and spatially depending on the physiological and developmental status of the cell. MicroRNAs (miRNAs), one of the small non-coding classes of RNAs, approximately 19-22 nucleotides in length, are one of the candidates for post-transcriptional developmental regulators. These tiny non-coding RNAs are expressed in ovarian tissue, granulosa cells, testis, oocytes, follicular fluid, and embryos and are implicated in diverse biological processes such as cell-to-cell communication. Moreover, accumulated evidences have also highlighted that miRNAs can be released into the extracellular environment through different mechanisms facilitating intercellular communication. Therefore, understanding miRNAs mediated regulatory mechanisms during gametogenesis and embryogenesis provides further insights about the molecular mechanisms underlying oocyte/sperm formation, early embryo development, and implantation. Thus, this review highlights the role of miRNAs in mammalian gametogenesis and embryogenesis and summarizes recent findings about miRNA-mediated post-transcriptional regulatory mechanisms occurring during early mammalian development.


Assuntos
Gametogênese/fisiologia , MicroRNAs/metabolismo , Animais , Implantação do Embrião , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Gametogênese/genética , Masculino , MicroRNAs/genética
19.
PLoS One ; 14(10): e0223753, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31661494

RESUMO

Focal adhesion pathway is one of the key molecular pathways affected by suboptimal culture conditions during embryonic development. The epidermal growth factor (EGF) and hyaluronic acid (HA) are believed to be involved in the focal adhesion pathway function by regulating the adherence of the molecules to the extracellular matrix. However, regulatory and molecular mechanisms through which the EGF and HA could influence the embryo development is not clear. Therefore, this study aimed to investigate the effect of continued or stage specific supplementation of EGF and/or HA on the developmental competence and quality of bovine preimplantation embryos and the subsequent consequences on the expression and DNA methylation patterns of genes involved in the focal adhesion pathway. The results revealed that, the supplementation of EGF or HA from zygote to the blastocysts stage reduced the level of reactive oxygen species and increased hatching rate after thawing. On the other hand, HA decreased the apoptotic nuclei and increased blastocyst compared to EGF supplemented group. Gene expression and DNA methylation analysis in the resulting blastocysts indicated that, combined supplementation of EGF and HA increased the expression of genes involved in focal adhesion pathway while supplementation of EGF, HA or a combination of EGF and HA during the entire preimplantation period changed the DNA methylation patterns of genes involved in focal adhesion pathway. On the other hand, blastocysts developed in culture media supplemented with EGF + HA until the 16-cell stage exhibited higher expression level of genes involved in focal adhesion pathway compared to those supplemented after the 16-cell stage. Conversely, the DNA methylation level of candidate genes was increased in the blastocysts obtained from embryos cultured in media supplemented with EGF + HA after 16-cell stage. In conclusion, supplementation of bovine embryos with EGF and/or HA during the entire preimplantation period or in a stage specific manner altered the DNA methylation and expression patterns of candidate genes involved in the focal adhesion pathway which was in turn associated with the observed embryonic developmental competence and quality.


Assuntos
Metilação de DNA , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Adesões Focais/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Bovinos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fator de Crescimento Epidérmico/administração & dosagem , Feminino , Fertilização in vitro , Perfilação da Expressão Gênica , Ácido Hialurônico/administração & dosagem , Técnicas de Maturação in Vitro de Oócitos , Gravidez , Transcriptoma
20.
PLoS One ; 14(9): e0222513, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536525

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting the swine industry worldwide. Genetic variation in host immunity has been considered as one of the potential determinants to improve the immunocompetence, thereby resistance to PRRS. Therefore, the present study aimed to investigate the breed difference in innate immune response to PRRSV vaccination between German Landrace (DL) and Pietrain (Pi) pigs. We analyzed microarray-based transcriptome profiles of peripheral blood mononuclear cells (PBMCs) collected before (0 h) and 24 h after PRRSV vaccination from purebred DL and Pi pigs with three biological replicates. In total 4,269 transcripts were identified to be differentially expressed in PBMCs in at least any of four tested contrast pairs (i.e. DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-0h and DL-24h vs. Pi-24h). The number of vaccine-induced differentially expressed genes (DEGs) was much higher (2,459) in DL pigs than that of Pi pigs (291). After 24 h of PRRSV vaccination, 1,046 genes were differentially expressed in PMBCs of DL pigs compared to that of Pi (DL-24h vs. Pi-24h), indicating the breed differences in vaccine responsiveness. The top biological pathways significantly affected by DEGs of both breeds were linked to immune response functions. The network enrichment analysis identified ADAM17, STAT1, MMS19, RPA2, BAD, UCHL5 and APC as potential regulatory genes for the functional network of PRRSV vaccine response specific for DL; while FOXO3, IRF2, ADRBK1, FHL3, PPP2CB and NCOA6 were found to be the most potential hubs of Pi specific transcriptome network. In conclusion, our data provided insights of breed-specific host transcriptome responses to PRRSV vaccination which might contribute in better understanding of PPRS resistance in pigs.


Assuntos
Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/fisiologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Transcriptoma/genética , Transcriptoma/imunologia , Animais , Anticorpos Antivirais/imunologia , Cruzamento/métodos , Expressão Gênica/genética , Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Leucócitos Mononucleares/virologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos , Vacinação/métodos , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...