Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 19(4): 688-701, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33443114

RESUMO

Specific biological properties of those circulating cancer cells that are the origin of brain metastases (BM) are not well understood. Here, single circulating breast cancer cells were fate-tracked during all steps of the brain metastatic cascade in mice after intracardial injection over weeks. A novel in vivo two-photon microscopy methodology was developed that allowed to determine the specific cellular and molecular features of breast cancer cells that homed in the brain, extravasated, and successfully established a brain macrometastasis. Those BM-initiating breast cancer cells (BMIC) were mainly originating from a slow-cycling subpopulation that included only 16% to 20% of all circulating cancer cells. BMICs showed enrichment of various markers of cellular stemness. As a proof of principle for the principal usefulness of this approach, expression profiling of BMICs versus non-BMICs was performed, which revealed upregulation of NDRG1 in the slow-cycling BMIC subpopulation in one BM model. Here, BM development was completely suppressed when NDRG1 expression was downregulated. In accordance, in primary human breast cancer, NDRG1 expression was heterogeneous, and high NDRG1 expression was associated with shorter metastasis-free survival. In conclusion, our data identify temporary slow-cycling breast cancer cells as the dominant source of brain and other metastases and demonstrates that this can lead to better understanding of BMIC-relevant pathways, including potential new approaches to prevent BM in patients. IMPLICATIONS: Cancer cells responsible for successful brain metastasis outgrowth are slow cycling and harbor stemness features. The molecular characteristics of these metastasis-initiating cells can be studied using intravital microscopy technology.


Assuntos
Neoplasias Encefálicas/secundário , Encéfalo/fisiopatologia , Células Neoplásicas Circulantes/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Metástase Neoplásica
2.
BMC Cancer ; 20(1): 410, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398144

RESUMO

BACKGROUND: Neurosurgical resection represents an important treatment option in the modern, multimodal therapy approach of brain metastases (BM). Guidelines for perioperative imaging exist for primary brain tumors to guide postsurgical treatment. Optimal perioperative imaging of BM patients is so far a matter of debate as no structured guidelines exist. METHODS: A comprehensive questionnaire about perioperative imaging was designed by the European Association of Neuro-Oncology (EANO) Youngsters Committee. The survey was distributed to physicians via the EANO network to perform a descriptive overview on the current habits and their variability on perioperative imaging. Chi square test was used for dichotomous variables. RESULTS: One hundred twenty physicians worldwide responded to the survey. MRI was the preferred preoperative imaging method (93.3%). Overall 106/120 (88.3%) physicians performed postsurgical imaging routinely including MRI alone (62/120 [51.7%]), postoperative CT (29/120 [24.2%]) and MRI + CT (15/120 [12.5%]). No correlation of postsurgical MRI utilization in academic vs. non-academic hospitals (58/89 [65.2%] vs. 19/31 [61.3%], p = 0.698) was found. Early postoperative MRI within ≤72 h after resection is obtained by 60.8% of the participants. The most frequent reason for postsurgical imaging was to evaluate the extent of tumor resection (73/120 [60.8%]). In case of residual tumor, 32/120 (26.7%) participants indicated to adjust radiotherapy, 34/120 (28.3%) to consider re-surgery to achieve complete resection and 8/120 (6.7%) to evaluate both. CONCLUSIONS: MRI was the preferred imaging method in the preoperative setting. In the postoperative course, imaging modalities and timing showed high variability. International guidelines for perioperative imaging with special focus on postoperative MRI to assess residual tumor are warranted to optimize standardized management and adjuvant treatment decisions for BM patients.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasia Residual/patologia , Neuroimagem/métodos , Procedimentos Neurocirúrgicos/métodos , Assistência Perioperatória , Neoplasias Encefálicas/cirurgia , Europa (Continente) , Humanos , Neoplasia Residual/cirurgia , Prognóstico , Inquéritos e Questionários
3.
Acta Neuropathol ; 139(1): 175-192, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31473790

RESUMO

In search of novel genes associated with glioma pathogenesis, we have previously shown frequent deletions of the KIAA1797/FOCAD gene in malignant gliomas, and a tumor suppressor function of the encoded focadhesin impacting proliferation and migration of glioma cells in vitro and in vivo. Here, we examined an association of reduced FOCAD gene copy number with overall survival of patients with astrocytic gliomas, and addressed the molecular mechanisms that govern the suppressive effect of focadhesin on glioma growth. FOCAD loss was associated with inferior outcome in patients with isocitrate dehydrogenase 1 or 2 (IDH)-mutant astrocytic gliomas of WHO grades II-IV. Multivariate analysis considering age at diagnosis as well as IDH mutation, MGMT promoter methylation, and CDKN2A/B homozygous deletion status confirmed reduced FOCAD gene copy number as a prognostic factor for overall survival. Using a yeast two-hybrid screen and pull-down assays, tubulin beta-6 and other tubulin family members were identified as novel focadhesin-interacting partners. Tubulins and focadhesin co-localized to centrosomes where focadhesin was enriched in proximity to centrioles. Focadhesin was recruited to microtubules via its interaction partner SLAIN motif family member 2 and reduced microtubule assembly rates, possibly explaining the focadhesin-dependent decrease in cell migration. During the cell cycle, focadhesin levels peaked in G2/M phase and influenced time-dependent G2/M progression potentially via polo like kinase 1 phosphorylation, providing a possible explanation for focadhesin-dependent cell growth reduction. We conclude that FOCAD loss may promote biological aggressiveness and worsen clinical outcome of diffuse astrocytic gliomas by enhancing microtubule assembly and accelerating G2/M phase progression.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Divisão Celular/genética , Feminino , Fase G2/genética , Humanos , Masculino , Microtúbulos/genética , Pessoa de Meia-Idade , Deleção de Sequência , Adulto Jovem
4.
Clin Cancer Res ; 25(1): 253-265, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274984

RESUMO

PURPOSE: Resistance is an obstacle of glioma therapy. Despite targeted interventions, tumors harbor primary resistance or become resistant over short course of treatment. This study examined the mouse double minute 2 (MDM2) inhibitor RG7388 together with radiotherapy and analyzed strategies to overcome acquired MDM2 inhibitor resistance in glioblastoma. EXPERIMENTAL DESIGN: Effects of RG7388 and radiotherapy were analyzed in p53 wild-type glioblastoma cell lines and glioma-initiating cells. RG7388 resistant cells were generated by increasing RG7388 doses over 3 months. Regulated pathways were investigated by microarray, qRT-PCR, and immunoblot analysis and specifically inhibited to evaluate rational salvage therapies at RG7388 resistance. Effects of RG7388 and trametinib treatment were challenged in an orthotopical mouse model with RG7388 resistant U87MG glioblastoma cells. RESULTS: MDM2 inhibition required functional p53 and showed synergistic activity with radiotherapy in first-line treatment. Long-term exposure to RG7388 induced resistance by activation of the extracellular signal-regulated kinases 1/2 (ERK1/2)-insulin growth factor binding protein 1 (IGFBP1) signaling cascade, which was specifically overcome by ERK1/2 pathway inhibition with trametinib and knockdown of IGFBP1. Combining trametinib with continued RG7388 treatment enhanced antitumor effects at RG7388 resistance in vitro and in vivo. CONCLUSIONS: These data provide a rationale for combining RG7388 and radiotherapy as first-line therapy with a specific relevance for tumors insensitive to alkylating standard chemotherapy and for the addition of trametinib to continued RG7388 treatment as salvage therapy after acquired resistance against RG7388 for clinical practice.


Assuntos
Glioblastoma/tratamento farmacológico , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/radioterapia , Xenoenxertos , Humanos , Camundongos , Piridonas/farmacologia , Pirimidinonas/farmacologia , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , para-Aminobenzoatos/farmacologia
5.
Mol Cancer Res ; 16(5): 767-776, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29453321

RESUMO

CD95 (Fas/APO-1), a death receptor family member, activity has been linked to tumorigenicity in multiple cancers, including glioblastoma multiforme (GBM). A phase II clinical trial on relapsed glioblastoma patients demonstrated that targeted inhibition of CD95 signaling via the CD95 ligand (CD95L) binding and neutralizing Fc-fusion protein APG101 (asunercept) prolonged patient survival. Although CD95 signaling may be relevant for multiple aspects of tumor growth, the mechanism of action of APG101 in glioblastoma is not clear. APG101 action was examined by in vitro proliferation, apoptosis, and invasion assays with human and murine glioma and human microglial cells, as well as in vivo therapy studies with orthotopic gliomas and clinical data. APG101 inhibits CD95L-mediated invasion of glioma cells. APG101 treatment was effective in glioma-bearing mice, independently of the presence or absence of CD4 and CD8 T lymphocytes, which should be sensitive to CD95L. Combined with radiotherapy, APG101 demonstrated a reduction of tumor growth, fewer tumor satellites, reduced activity of matrix metalloproteinases (MMP) as well as prolonged survival of tumor-bearing mice compared with radiotherapy alone. Inhibiting rather than inducing CD95 activity is a break-of-paradigm therapeutic approach for malignant gliomas. Evidence, both in vitro and in vivo, is provided that CD95L-binding fusion protein treatment enhanced the efficacy of radiotherapy and reduced unwanted proinfiltrative effects by reducing metalloproteinase activity by directly affecting the tumor cells.Implications: APG101 (asunercept) successfully used in a controlled phase II glioblastoma trial (NCT01071837) acts anti-invasively by inhibiting matrix metalloproteinase signaling, resulting in additive effects together with radiotherapy and helping to further develop a treatment for this devastating disease. Mol Cancer Res; 16(5); 767-76. ©2018 AACR.


Assuntos
Proteína Ligante Fas/antagonistas & inibidores , Glioblastoma/radioterapia , Imunoglobulina G/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Receptor fas/uso terapêutico , Animais , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Imunoglobulina G/farmacologia , Camundongos , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais
6.
J Neurosci ; 37(29): 6837-6850, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28607172

RESUMO

Early and progressive colonization of the healthy brain is one hallmark of diffuse gliomas, including glioblastomas. We recently discovered ultralong (>10 to hundreds of microns) membrane protrusions [tumor microtubes (TMs)] extended by glioma cells. TMs have been associated with the capacity of glioma cells to effectively invade the brain and proliferate. Moreover, TMs are also used by some tumor cells to interconnect to one large, resistant multicellular network. Here, we performed a correlative gene-expression microarray and in vivo imaging analysis, and identified novel molecular candidates for TM formation and function. Interestingly, these genes were previously linked to normal CNS development. One of the genes scoring highest in tests related to the outgrowth of TMs was tweety-homolog 1 (TTYH1), which was highly expressed in a fraction of TMs in mice and patients. Ttyh1 was confirmed to be a potent regulator of normal TM morphology and of TM-mediated tumor-cell invasion and proliferation. Glioma cells with one or two TMs were mainly responsible for effective brain colonization, and Ttyh1 downregulation particularly affected this cellular subtype, resulting in reduced tumor progression and prolonged survival of mice. The remaining Ttyh1-deficient tumor cells, however, had more interconnecting TMs, which were associated with increased radioresistance in those small tumors. These findings imply a cellular and molecular heterogeneity in gliomas regarding formation and function of distinct TM subtypes, with multiple parallels to neuronal development, and suggest that Ttyh1 might be a promising target to specifically reduce TM-associated brain colonization by glioma cells in patients.SIGNIFICANCE STATEMENT In this report, we identify tweety-homolog 1 (Ttyh1), a membrane protein linked to neuronal development, as a potent driver of tumor microtube (TM)-mediated brain colonization by glioma cells. Targeting of Ttyh1 effectively inhibited the formation of invasive TMs and glioma growth, but increased network formation by intercellular TMs, suggesting a functional and molecular heterogeneity of the recently discovered TMs with potential implications for future TM-targeting strategies.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica
7.
Oncoimmunology ; 5(12): e1240858, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28123877

RESUMO

Tryptophan metabolism is a key process that shapes the immunosuppressive tumor microenvironment. The two rate-limiting enzymes that mediate tryptophan depletion, indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), have moved into the focus of research and inhibitors targeting IDO and TDO have entered clinical trials. Local tryptophan depletion is generally viewed as the crucial immunosuppressive mechanism. In T cells, the kinase general control non-derepressible 2 (GCN2) has been identified as a molecular sensor of tryptophan deprivation. GCN2 activation by tryptophan depletion induces apoptosis and mitigates T cell proliferation. Here, we investigated whether GCN2 attenuates tumor rejection in experimental B16 melanoma using T cell-specific Gcn2 knockout mice. Our data demonstrate that GCN2 in T cells did not affect immunity to B16 tumors even when animals were treated with antibodies targeting cytotoxic T lymphocyte antigen-4 (CTLA4). GCN2-deficient gp100 TCR-transgenic T cells were equally effective as wild-type pmel T cells against gp100-expressing B16 melanomas after adoptive transfer and gp100 peptide vaccination. Even augmentation of tumoral tryptophan metabolism in B16 tumors by lentiviral overexpression of Tdo did not differentially affect GCN2-proficient vs. GCN2-deficient T cells in vivo. Importantly, GCN2 target genes were not upregulated in tumor-infiltrating T cells. MALDI-TOF MS imaging of B16 melanomas demonstrated maintenance of intratumoral tryptophan levels despite high tryptophan turnover, which prohibits a drop in tryptophan sufficient to activate GCN2 in tumor-infiltrating T cells. In conclusion, our results do not suggest that suppression of antitumor immune responses by tryptophan metabolism is driven by local tryptophan depletion and subsequent GCN2-mediated T cell anergy.

8.
Cancer Lett ; 380(2): 568-576, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-26297987

RESUMO

Hypoxia-regulated molecules play an important role in vascular resistance to antiangiogenic treatment. N-myc downstream-regulated-gene 1 (NDRG1) is significantly upregulated during hypoxia in glioma. It was the aim of the present study to analyze the role of NDRG1 on glioma angiogenesis and on antiangiogenic treatment. Orthotopically implanted NDRG1 glioma showed reduced tumor growth and vessel density compared to controls. RT-PCR gene array analysis revealed a 30-fold TNFSF15 increase in NDRG1 tumors. Consequently, the supernatant from NDRG1 transfected U87MG glioma cells resulted in reduced HUVEC proliferation, migration and angiogenic response in tube formation assays in vitro. This effect was provoked by increased TNFSF15 promoter activity in NDRG1 cells. Mutations in NF-κB and AP-1 promoter response elements suppressed TNFSF15 promoter activity. Moreover, U87MG glioma NDRG1 knockdown supernatant contained multiple proangiogenic proteins and increased HUVEC spheroid sprouting. Sunitinib treatment of orhotopically implanted mice reduced tumor volume and vessel density in controls; in NDRG1 overexpressing cells no reduction of tumor volume or vessel density was observed. NDRG1 overexpression leads to reduced tumor growth and angiogenesis in experimental glioma via upregulation of TNFSF15. In NDRG1 overexpressing glioma antiangiogenic treatment does not yield a therapeutic response.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/tratamento farmacológico , Proteínas de Ciclo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioma/tratamento farmacológico , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neovascularização Patológica , Pirróis/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Regulação Neoplásica da Expressão Gênica , Glioma/irrigação sanguínea , Glioma/genética , Glioma/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Neovascularização Fisiológica , Regiões Promotoras Genéticas , Interferência de RNA , Transdução de Sinais , Sunitinibe , Fatores de Tempo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transfecção , Carga Tumoral/efeitos dos fármacos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Regulação para Cima
9.
PLoS One ; 8(3): e58752, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554921

RESUMO

The objective of this study was to investigate the effects of modulating brain amyloid-ß (Aß) levels at different stages of amyloid pathology on synaptic function, inflammatory cell changes and hippocampal neurogenesis, i.e. processes perturbed in Alzheimer's disease (AD). Young (4- to 6-month-old) and older (15- to 18-month-old) APP(SWE) transgenic (Tg2576) mice were treated with the AD candidate drug (+)-phenserine for 16 consecutive days. We found significant reductions in insoluble Aß1-42 levels in the cortices of both young and older transgenic mice, while significant reductions in soluble Aß1-42 levels and insoluble Aß1-40 levels were only found in animals aged 15-18 months. Autoradiography binding with the amyloid ligand Pittsburgh Compound B ((3)H-PIB) revealed a trend for reduced fibrillar Aß deposition in the brains of older phenserine-treated Tg2576 mice. Phenserine treatment increased cortical synaptophysin levels in younger mice, while decreased interleukin-1ß and increased monocyte chemoattractant protein-1 and tumor necrosis factor-alpha levels were detected in the cortices of older mice. The reduction in Aß1-42 levels was associated with an increased number of bromodeoxyuridine-positive proliferating cells in the hippocampi of both young and older Tg2576 mice. To determine whether the increased cell proliferation was accompanied by increased neuronal production, the endogenous early neuronal marker doublecortin (DCX) was examined in the dentate gyrus (DG) using immunohistochemical detection. Although no changes in the total number of DCX(+)-expressing neurons were detected in the DG in Tg2576 mice at either age following (+)-phenserine treatment, dendritic arborization was increased in differentiating neurons in young Tg2576 mice. Collectively, these findings indicate that reducing Aß1-42 levels in Tg2576 mice at an early pathological stage affects synaptic function by modulating the maturation and plasticity of newborn neurons in the brain. In contrast, lowering Aß levels in Tg2576 mice when Aß plaque pathology is prominent mainly alters the levels of proinflammatory cytokines and chemokines.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Plasticidade Neuronal , Fatores Etários , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Proteína Duplacortina , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fisostigmina/administração & dosagem , Fisostigmina/análogos & derivados , Placa Amiloide , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...