Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18354, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110187

RESUMO

We investigate MeV-level attosecond electron bunches from ultrashort-pulse laser-solid interactions through similarities between experimental and simulated electron energy spectra. We show measurements of the bunch duration and temporal structure from particle-in-cell simulations. The experimental observation of such bunches favors specular reflection direction when focusing the laser pulse onto a subwavelength boundary of thick overdense plasmas at grazing incidence. Particle-in-cell simulation further reveals that the attosecond duration is a result of ultra-thin ([Formula: see text]tenth of a micron) gaps of zero electromagnetic energy density in the modulated reflected radiation, while the bunching (locally peaked electron concentration) comes from the highly-directional electron angular distribution acquired by the electrons in a grazing incidence setup. To isolate a single electron bunch, we perform simulations using 1-cycle laser pulses and analyze the effect of carrier-envelop phase with particle tracking. The duration of the electron bunch can be further decreased by increasing the laser intensity and the focal spot size, while its direction can be changed by tuning the preplasma density gradient.

2.
Phys Rev E ; 96(4-1): 043203, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347495

RESUMO

Recent theory has demonstrated a novel physics regime for magnetic reconnection in high-energy-density plasmas where the magnetic field is advected by heat flux via the Nernst effect. Here we elucidate the physics of the electron dissipation layer in this regime. Through fully kinetic simulation and a generalized Ohm's law derived from first principles, we show that momentum transport due to a nonlocal effect, the heat-flux-viscosity, provides the dissipation mechanism for magnetic reconnection. Scaling analysis, and simulations show that the reconnection process comprises a magnetic field compression stage and quasisteady reconnection stage, and the characteristic width of the current sheet in this regime is several electron mean-free paths. These results show the important interplay between nonlocal transport effects and generation of anisotropic components to the distribution function.

3.
Opt Express ; 24(6): 6071-82, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136801

RESUMO

We demonstrate the ability to position single and multiple filaments arbitrarily within the energy reservoir of a high power femtosecond laser pulse. A deformable mirror controlled by a genetic algorithm finds the optimal phase profile for producing filaments at user-defined locations within the energy reservoir to within a quarter of the nominal filament size, on average. This proof-of-principle experiment demonstrates a potential technique for fast control of the configuration of the filaments.

4.
Opt Lett ; 35(19): 3186-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20890328

RESUMO

Harmonics up to the 18th order are generated from solid targets by focusing 2 mJ, 50 fs pulses at 800 nm to a spot size of 1.7 µm (FWHM). To our knowledge, this is the first demonstration of high-harmonic generation with a very short focal length paraboloid (f/1.4) and kilohertz laser system. The harmonics have a low divergence (<4°) compared to the driving beam and conversion efficiencies (>10(-7) per harmonic) comparable to gas harmonics. No contrast enhancement techniques are employed, and the system is capable of operating at 500 Hz.

5.
Phys Plasmas ; 17(4)2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20838426

RESUMO

The propagation of ultraintense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two dimensional particle-in-cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.

6.
Phys Rev Lett ; 105(22): 220407, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21231373

RESUMO

High intensity colliding laser pulses can create abundant electron-positron pair plasma [A. R. Bell and J. G. Kirk, Phys. Rev. Lett. 101, 200403 (2008)], which can scatter the incoming electromagnetic waves. This process can prevent one from reaching the critical field of quantum electrodynamics at which vacuum breakdown and polarization occur. Considering the pairs are seeded by the Schwinger mechanism, it is shown that the effects of radiation friction and the electron-positron avalanche development in vacuum depend on the electromagnetic wave polarization. For circularly polarized colliding pulses, these effects dominate not only the particle motion but also the evolution of the pulses. For linearly polarized pulses, these effects are not as strong. There is an apparent analogy of these cases with circular and linear electron accelerators to the corresponding constraining and reduced roles of synchrotron radiation losses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...