Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 100(1): 21-32, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19968546

RESUMO

Hypersensitive response (HR) against Blumeria graminis f. sp. hordei infection in barley (Hordeum vulgare) was associated with stomata "lock-up" leading to increased leaf water conductance (g(l)). Unique spatio-temporal patterns of HR formation occurred in barley with Mla1, Mla3, or MlLa R genes challenged with B. graminis f. sp. hordei. With Mla1, a rapid HR, limited to epidermal cells, arrested fungal growth before colonies initiated secondary attacks. With Mla3, mesophyll HR preceded that in epidermal cells whose initial survival supported secondary infections. With MlLa, mesophyll survived and not all attacked epidermal cells died immediately, allowing colony growth and secondary infection until arrested. Isolines with Mla1, Mla3, or MlLa genes inoculated with B. graminis f. sp. hordei ranging from 1 to 100 conidia mm(2) showed abnormally high g(l) during dark periods whose timing and extent correlated with those of each HR. Each isoline showed increased dark g(l) with the nonpathogen B. graminis f. sp. avenae which caused a single epidermal cell HR. Guard cell autofluorescence was seen only after drying of epidermal strips and closure of stomata suggesting that locked open stomata were viable. The data link stomatal lock-up to HR associated cell death and has implications for strategies for selecting disease resistant genotypes.


Assuntos
Ascomicetos/fisiologia , Morte Celular/fisiologia , Hordeum/microbiologia , Hordeum/fisiologia , Folhas de Planta/fisiologia , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Hordeum/ultraestrutura , Microscopia Eletrônica de Varredura , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Água/metabolismo
2.
J Exp Bot ; 57(10): 2211-26, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16793847

RESUMO

Blumeria graminis f.sp. hordei (Bgh) attack disrupted stomatal behaviour, and hence leaf water conductance (g(l)), in barley genotypes Pallas and Risø-S (susceptible), P01 (with Mla1 conditioning a hypersensitive response; HR), and P22 and Risø-R (with mlo5 conditioning papilla-based penetration resistance). Inoculation caused some stomatal closure well before the fungus attempted infection. Coinciding with epidermal cell penetration, stomatal opening in light was also impeded, although stomata of susceptible and mlo5 lines remained largely able to close in darkness. Following infection, in susceptible lines stomata closed in darkness but opening in light was persistently impeded. In Risø-R, stomata recovered nearly complete function by approximately 30 h after inoculation, i.e. after penetration resistance was accomplished. In P01, stomata became locked open and unable to close in darkness shortly after epidermal cells died due to HR. In the P22 background, mlo5 penetration resistance was often followed by consequential death of attacked cells, and here too stomata became locked open, but not until approximately 24 h after pathogen attack had ceased. The influence of epidermal cell death was localized, and only affected stomata within one or two cells distance. These stomata were unable to close not only in darkness but also after application of abscisic acid and in wilted leaves suffering drought. Thus, resistance to Bgh based on HR or associated with cell death may have previously unsuspected negative consequences for the physiological health of apparently 'disease-free' plants. The results are discussed in relation to the control of stomatal aperture in barley by epidermal cells.


Assuntos
Ascomicetos/fisiologia , Morte Celular/fisiologia , Hordeum/fisiologia , Epiderme Vegetal/fisiologia , Folhas de Planta/fisiologia , Ácido Abscísico/fisiologia , Expressão Gênica , Hordeum/genética , Hordeum/microbiologia , Microscopia , Doenças das Plantas , Epiderme Vegetal/microbiologia , Folhas de Planta/microbiologia , Água/fisiologia
3.
New Phytol ; 122(2): 261-272, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33873986

RESUMO

A nuclear-gene mutation of the C3 grass Lolium temulentum L., which arose following cell suspension culture and plant regeneration, is manifested as delayed and incomplete greening, which occurs from the leaf tip downwards. Many plastids in the mutant exhibit abnormal morphology when examined by transmission electron microscopy; the plastid outer envelope lacks integrity and thylakoids, while still stacked, are spread over a wide area surrounded by diffuse stromal contents. These aberrant plastids can coexist with apparently normal chloroplasts in the same cell of mutant plants. Levels of chlorophyll a and b, and carotenoids, are all lower in the mutants than in normal Lolium temulentum. Leaf length, absolute growth rate, and number of cells per unit length at the leaf base, are greatly reduced (20-30% the normal values) in slow-to-green plants, but relative growth rate, duration of leaf growth, length of cell division zone and proportion of cells dividing are little affected. This novel mutant is a potentially valuable resource for studying interrelationships between photosynthetic function and leaf extension growth in grasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...