Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612560

RESUMO

Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, significantly contribute to adult blindness. The Royal College of Surgeons (RCS) rat is a well-established disease model for studying these dystrophies; however, molecular investigations remain limited. We conducted a comprehensive analysis of retinal degeneration in RCS rats, including an immunodeficient RCS (iRCS) sub-strain, using ocular coherence tomography, electroretinography, histology, and molecular dissection using transcriptomics and immunofluorescence. No significant differences in retinal degeneration progression were observed between the iRCS and immunocompetent RCS rats, suggesting a minimal role of adaptive immune responses in disease. Transcriptomic alterations were primarily in inflammatory signaling pathways, characterized by the strong upregulation of Tnfa, an inflammatory signaling molecule, and Nox1, a contributor to reactive oxygen species (ROS) generation. Additionally, a notable decrease in Alox15 expression was observed, pointing to a possible reduction in anti-inflammatory and pro-resolving lipid mediators. These findings were corroborated by immunostaining, which demonstrated increased photoreceptor lipid peroxidation (4HNE) and photoreceptor citrullination (CitH3) during retinal degeneration. Our work enhances the understanding of molecular changes associated with retinal degeneration in RCS rats and offers potential therapeutic targets within inflammatory and oxidative stress pathways for confirmatory research and development.


Assuntos
Degeneração Macular , Degeneração Retiniana , Retinose Pigmentar , Cirurgiões , Humanos , Adulto , Animais , Ratos , Retina
2.
Bioengineering (Basel) ; 11(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38391660

RESUMO

Functional ultrasound (fUS) flow imaging provides a non-invasive method for the in vivo study of cerebral blood flow and neural activity. This study used functional flow imaging to investigate rat brain's response to ultrasound and colored-light stimuli. Male Long-Evan rats were exposed to direct full-field strobe flashes light and ultrasound stimulation to their retinas, while brain activity was measured using high-frequency ultrasound imaging. Our study found that light stimuli, particularly blue light, elicited strong responses in the visual cortex and lateral geniculate nucleus (LGN), as evidenced by changes in cerebral blood volume (CBV). In contrast, ultrasound stimulation elicited responses undetectable with fUS flow imaging, although these were observable when directly measuring the brain's electrical signals. These findings suggest that fUS flow imaging can effectively differentiate neural responses to visual stimuli, with potential applications in understanding visual processing and developing new diagnostic tools.

3.
J Neurosci Methods ; 405: 110095, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403001

RESUMO

BACKGROUND: The retinotopic map property of the superior colliculus (SC) is a reliable indicator of visual functional changes in rodents. Electrophysiological mapping of the SC using a single electrode has been employed for measuring visual function in rat and mouse disease models. Single electrode mapping is highly laborious requiring long-term exposure to the SC surface and prolonged anesthetic conditions that can adversely affect the mapping data. NEW METHOD: To avoid the above-mentioned issues, we fabricated a fifty-six (56) electrode multi-electrode array (MEA) for rapid and reliable visual functional mapping of the SC. Since SC is a dome-shaped structure, the array was made of electrodes with dissimilar tip lengths to enable simultaneous and uniform penetration of the SC. RESULTS: SC mapping using the new MEA was conducted in retinal degenerate (RD) Royal College of Surgeons (RCS) rats and rats with focal retinal damage induced by green diode laser. For SC mapping, the MEA was advanced into the SC surface and the visual activities were recorded during full-filed light stimulation of the eye. Based on the morphological examination, the MEA electrodes covered most of the exposed SC area and penetrated the SC surface at a relatively uniform depth. MEA mapping in RCS rats (n=9) demonstrated progressive development of a scotoma in the SC that corresponded to the degree of photoreceptor loss. MEA mapping in the laser damaged rats demonstrated the presence of a scotoma in the SC area that corresponded to the location of retinal laser injury. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: The use of MEA for SC mapping is advantageous over single electrode recording by enabling faster recordings and reducing anesthesia time. This study establishes the feasibility of the MEA technique for rapid and efficient SC mapping, particularly advantageous for evaluating therapeutic effects in retinal degenerate rat disease models.


Assuntos
Escotoma , Colículos Superiores , Humanos , Ratos , Animais , Camundongos , Colículos Superiores/fisiologia , Retina/fisiologia , Luz , Eletrodos
4.
Exp Eye Res ; 240: 109789, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242423

RESUMO

Age-related macular degeneration (AMD), a leading cause of vision loss, primarily arises from the degeneration of retinal pigment epithelium (RPE) and photoreceptors. Current therapeutic options for dry AMD are limited. Encouragingly, cultured RPE cells on parylene-based biomimetic Bruch's membrane demonstrate characteristics akin to the native RPE layer. In this study, we cultivated human embryonic stem cell-derived polarized RPE (hESC-PRPE) cells on parylene membranes at both small- and large-scale settings, collecting conditioned supernatant, denoted as PRPE-SF. We conducted a comprehensive analysis of the morphology of the cultured hESC-RPE cells and the secreted growth factors in PRPE-SF. To evaluate the in vivo efficacy of these products, the product was administered via intravitreal injections of PRPE-SF in immunodeficient Royal College of Surgeons (iRCS) rats, a model for retinal degeneration. Our study not only demonstrated the scalability of PRPE-SF production while maintaining RPE cell phenotype but also showed consistent protein concentrations between small- and large-scale batches. We consistently identified 10 key factors in PRPE-SF, including BMP-7, IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-6, MANF, PEDF, PDGF-AA, TGFß1, and VEGF. Following intravitreal administration of PRPE-SF, we observed a significant increase in the thickness of the outer nuclear layer (ONL) and photoreceptor preservation in iRCS rats. Furthermore, correlation analysis revealed that IGFBP-3, IGFBP-4, MANF, PEDF, and TGFß1 displayed positive associations with in vivo bioactivity, while GDF-15 exhibited a negative correlation. Overall, this study highlights the feasibility of scaling up PRPE-SF production on parylene membranes without compromising its essential constituents. The outcomes of PRPE-SF administration in an animal model of retinal degeneration present substantial potential for photoreceptor preservation. Moreover, the identification of candidate surrogate potency markers, showing strong positive associations with in vivo bioactivity, lays a solid foundation for the development of a promising therapeutic intervention for retinal degenerative diseases.


Assuntos
Polímeros , Degeneração Retiniana , Epitélio Pigmentado da Retina , Xilenos , Humanos , Animais , Ratos , Epitélio Pigmentado da Retina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina , Degeneração Retiniana/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37792653

RESUMO

An ultrasound concave 2-D ring array transducer was designed for applications in visual stimulation of the retina with a long-term goal to restore vision in individuals with intact neurons but suffering blindness due to retinopathies. The array was synthesized and has a frequency of 20 MHz (0.075-mm wavelengths in water), 18-mm focal length (the curvature of the concave array), 1004 elements (with a pitch of 4.0 wavelengths), and inner and outer diameters of 9 and 14 mm, respectively. Wave patterns produced with the array at the focal distance were simulated. Results show that the wave patterns obtained can achieve a full-width-at-half-maximum (FWHM) resolution of 0.147 mm that is very close to the FWHM diffraction limit (0.136 mm). In addition, a scaled experiment at a lower frequency of 2.5 MHz was performed. The result is very close to those obtained with the simulations.


Assuntos
Retina , Transdutores , Humanos , Desenho de Equipamento , Ultrassonografia/métodos , Imagens de Fantasmas , Retina/diagnóstico por imagem
6.
Cells ; 12(13)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37443724

RESUMO

Retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa, lack effective therapies. Conventional monotherapeutic approaches fail to target the multiple affected pathways in retinal degeneration. However, the retinal pigment epithelium (RPE) secretes several neurotrophic factors addressing diverse cellular pathways, potentially preserving photoreceptors. This study explored human embryonic stem cell-derived, polarized RPE soluble factors (PRPE-SF) as a combination treatment for retinal degeneration. PRPE-SF promoted retinal progenitor cell survival, reduced oxidative stress in ARPE-19 cells, and demonstrated critical antioxidant and anti-inflammatory effects for preventing retinal degeneration in the Royal College of Surgeons (RCS) rat model. Importantly, PRPE-SF treatment preserved retinal structure and scotopic b-wave amplitudes, suggesting therapeutic potential for delaying retinal degeneration. PRPE-SF is uniquely produced using biomimetic membranes for RPE polarization and maturation, promoting a protective RPE secretome phenotype. Additionally, PRPE-SF is produced without animal serum to avoid immunogenicity in future clinical development. Lastly, PRPE-SF is a combination of neurotrophic factors, potentially ameliorating multiple dysfunctions in retinal degenerations. In conclusion, PRPE-SF offers a promising therapeutic candidate for retinal degenerative diseases, advancing the development of effective therapeutic strategies for these debilitating conditions.


Assuntos
Degeneração Retiniana , Epitélio Pigmentado da Retina , Ratos , Humanos , Animais , Epitélio Pigmentado da Retina/metabolismo , Degeneração Retiniana/metabolismo , Secretoma , Retina/metabolismo , Células Fotorreceptoras/metabolismo
7.
Bioengineering (Basel) ; 10(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37237647

RESUMO

The optic nerve is the second cranial nerve (CN II) that connects and transmits visual information between the retina and the brain. Severe damage to the optic nerve often leads to distorted vision, vision loss, and even blindness. Such damage can be caused by various types of degenerative diseases, such as glaucoma and traumatic optic neuropathy, and result in an impaired visual pathway. To date, researchers have not found a viable therapeutic method to restore the impaired visual pathway; however, in this paper, a newly synthesized model is proposed to bypass the damaged portion of the visual pathway and set up a direct connection between a stimulated visual input and the visual cortex (VC) using Low-frequency Ring-transducer Ultrasound Stimulation (LRUS). In this study, by utilizing and integrating various advanced ultrasonic and neurological technologies, the following advantages are achieved by the proposed LRUS model: 1. This is a non-invasive procedure that uses enhanced sound field intensity to overcome the loss of ultrasound signal due to the blockage of the skull. 2. The simulated visual signal generated by LRUS in the visual-cortex-elicited neuronal response in the visual cortex is comparable to light stimulation of the retina. The result was confirmed by a combination of real-time electrophysiology and fiber photometry. 3. VC showed a faster response rate under LRUS than light stimulation through the retina. These results suggest a potential non-invasive therapeutic method for restoring vision in optic-nerve-impaired patients using ultrasound stimulation (US).

8.
J Vis Exp ; (190)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533846

RESUMO

Retinal degeneration, such as age-related macular degeneration (AMD), is a leading cause of blindness worldwide. A myriad of approaches have been undertaken to develop regenerative medicine-based therapies for AMD, including stem cell-based therapies. Rodents as animal models for retinal degeneration are a foundation for translational research, due to the broad spectrum of strains that develop retinal degeneration diseases at different stages. However, mimicking human therapeutic delivery of subretinal implants in rodents is challenging, due to anatomical differences such as lens size and vitreous volume. This surgical protocol aims to provide a guided method for transplanting implants into the subretinal space in rats. A user-friendly comprehensive description of the critical steps has been included. This protocol has been developed as a cost-efficient surgical procedure for reproducibility across different preclinical studies in rats. Proper miniaturization of a human-sized implant is required prior to conducting the surgical experiment, which includes adjustments to the dimensions of the implant. An external approach is used instead of an intravitreal procedure to deliver the implant to the subretinal space. Using a small sharp needle, a scleral incision is performed in the temporal superior quadrant, followed by paracentesis to reduce intraocular pressure, thereby minimizing resistance during the surgical implantation. Next, a balanced salt solution (BSS) injection through the incision is carried out to achieve focal retinal detachment (RD). Lastly, insertion and visualization of the implant into the subretinal space are conducted. Post-operative assessment of the subretinal placement of the implant includes imaging by spectral domain optical coherence tomography (SD-OCT). Imaging follow-ups ascertain the subretinal stability of the implant, before the eyes are harvested and fixated for histological analysis.


Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Ratos , Animais , Degeneração Retiniana/cirurgia , Degeneração Retiniana/patologia , Reprodutibilidade dos Testes , Modelos Animais de Doenças , Degeneração Macular/terapia , Tomografia de Coerência Óptica/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-36343006

RESUMO

Ultrasound neuromodulation is an emerging technology. A significant amount of effort has been devoted to investigating the feasibility of noninvasive ultrasound retinal stimulation. Recent studies have shown that ultrasound can activate neurons in healthy and degenerated retinas. Specifically, high-frequency ultrasound can evoke localized neuron responses and generate patterns in visual circuits. In this review, we recapitulate pilot studies on ultrasound retinal stimulation, compare it with other neuromodulation technologies, and discuss its advantages and limitations. An overview of the opportunities and challenges to develop a noninvasive retinal prosthesis using high-frequency ultrasound is also provided.


Assuntos
Retina , Próteses Visuais , Retina/diagnóstico por imagem , Retina/fisiologia , Ultrassonografia
10.
J Vis Exp ; (185)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35969051

RESUMO

Optokinetic nystagmus (OKN) is a reflexive eye movement initiated by the motion of visual stimuli in the field of vision. The head-tracking movement associated with OKN is commonly used as a measure of visual function in rodents. To record OKN responses in normal and experimental rats, a simple and inexpensive apparatus has been developed. This setup uses two tablet screens to display the OKN visual stimulus consisting of high contrast black and white stripes generated using the OKN Stripes Visualization Web Application, a freely available software. The rat is placed inside a clear Plexiglass holder that limits movement so that the rat's head continuously faces the OKN display screen. The position of the rat holder can be changed to adjust the distance between the rat and the display screen. A micro-camera positioned above the rat holder is used to record the rat's visual activities. These recordings can be used for quantitative assessments. Based on the presence or absence of clear head-tracking, the OKN responses at different spatial frequencies can be determined. The collected data demonstrates a novel technique for reliable measurement of visual acuity in normal and retinal degenerate rats.


Assuntos
Nistagmo Optocinético , Visão Ocular , Animais , Movimento , Ratos , Retina , Acuidade Visual
11.
BME Front ; 2022: 9829316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850175

RESUMO

Objective. Retinal degeneration involving progressive deterioration and loss of function of photoreceptors is a major cause of permanent vision loss worldwide. Strategies to treat these incurable conditions incorporate retinal prostheses via electrically stimulating surviving retinal neurons with implanted devices in the eye, optogenetic therapy, and sonogenetic therapy. Existing challenges of these strategies include invasive manner, complex implantation surgeries, and risky gene therapy. Methods and Results. Here, we show that direct ultrasound stimulation on the retina can evoke neuron activities from the visual centers including the superior colliculus and the primary visual cortex (V1), in either normal-sighted or retinal degenerated blind rats in vivo. The neuron activities induced by the customized spherically focused 3.1 MHz ultrasound transducer have shown both good spatial resolution of 250 µm and temporal resolution of 5 Hz in the rat visual centers. An additional customized 4.4 MHz helical transducer was further implemented to generate a static stimulation pattern of letter forms. Conclusion. Our findings demonstrate that ultrasound stimulation of the retina in vivo is a safe and effective approach with high spatiotemporal resolution, indicating a promising future of ultrasound stimulation as a novel and noninvasive visual prosthesis for translational applications in blind patients.

12.
Curr Stem Cell Res Ther ; 17(3): 214-225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34348629

RESUMO

BACKGROUND: The main cause of progressive vision impairment in retinal degenerative diseases is the dysfunction of photoreceptors and the underlying retinal pigment epithelial cells. The inadequate regenerative capacity of the neural retina and lack of established therapeutic options demand the development of clinical-grade protocols to halt the degenerative process in the eye or replace the damaged cells by using stem cell-derived products. Recently, stem cell-based regenerative therapies have been at the forefront of clinical investigations for retinal dystrophies. OBJECTIVE: This article will review different stem cell-based therapies currently employed for retinal degenerative diseases, recent clinical trials, and major challenges in the translation of these therapies from bench to bedside. METHODOLOGY: A systematic literature review was conducted to identify potentially relevant articles published in MEDLINE/PubMed, Embase, ClinicalTrials.gov, Drugs@FDA, European Medicines Agency, and World Health Organization International Clinical Trials Registry Platform. RESULTS: Transplantation of healthy cells to replace damaged cells in the outer retina is a clinically relevant concept because the inner retina that communicates with the visual areas of the brain remains functional even after the photoreceptors are completely lost. Various methods have been established for the differentiation of pluripotent stem cells into different retinal cell types that can be used for therapies. Factors released from transplanted somatic stem cells showed trophic support and photoreceptor rescue during the early stages of the disease. Several preclinical and phase I/II clinical studies using terminally differentiated photoreceptor/retinal pigment epithelial cells derived from pluripotent stem cells have shown proof of concept for visual restoration in Age-related Macular Degeneration (AMD), Stargardt disease, and Retinitis Pigmentosa (RP). CONCLUSION: Cell replacement therapy has great potential for vision restoration. The results obtained from the initial clinical trials are encouraging and indicate its therapeutic benefits. The current status of the therapies suggests that there is a long way to go before these results can be applied to routine clinical practice. Input from the ongoing multicentre clinical trials will give a more refined idea for the future design of clinical-grade protocols to transplant GMP level HLA matched cells.


Assuntos
Células-Tronco Pluripotentes , Degeneração Retiniana , Humanos , Retina , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/transplante , Pigmentos da Retina , Transplante de Células-Tronco/métodos
13.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831174

RESUMO

Retinal pigment epithelium (RPE) replacement therapy is evolving as a feasible approach to treat age-related macular degeneration (AMD). In many preclinical studies, RPE cells are transplanted as a cell suspension into immunosuppressed animal eyes and transplant effects have been monitored only short-term. We investigated the long-term effects of human Induced pluripotent stem-cell-derived RPE (iPSC-RPE) transplants in an immunodeficient Royal College of Surgeons (RCS) rat model, in which RPE dysfunction led to photoreceptor degeneration. iPSC-RPE cultured as a polarized monolayer on a nanoengineered ultrathin parylene C scaffold was transplanted into the subretinal space of 28-day-old immunodeficient RCS rat pups and evaluated after 1, 4, and 11 months. Assessment at early time points showed good iPSC-RPE survival. The transplants remained as a monolayer, expressed RPE-specific markers, performed phagocytic function, and contributed to vision preservation. At 11-months post-implantation, RPE survival was observed in only 50% of the eyes that were concomitant with vision preservation. Loss of RPE monolayer characteristics at the 11-month time point was associated with peri-membrane fibrosis, immune reaction through the activation of macrophages (CD 68 expression), and the transition of cell fate (expression of mesenchymal markers). The overall study outcome supports the therapeutic potential of RPE grafts despite the loss of some transplant benefits during long-term observations.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Epitélio Pigmentado da Retina/transplante , Animais , Biomarcadores/metabolismo , Humanos , Implantes Experimentais , Luz , Polímeros , Ratos , Colículos Superiores/efeitos da radiação , Análise de Sobrevida , Visão Ocular/efeitos da radiação , Xilenos
14.
Front Neurosci ; 15: 752958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764853

RESUMO

End-stage age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are two major retinal degenerative (RD) conditions that result in irreversible vision loss. Permanent eye damage can also occur in battlefields or due to accidents. This suggests there is an unmet need for developing effective strategies for treating permanent retinal damages. In previous studies, co-grafted sheets of fetal retina with its retinal pigment epithelium (RPE) have demonstrated vision improvement in rat retinal disease models and in patients, but this has not yet been attempted with stem-cell derived tissue. Here we demonstrate a cellular therapy for irreversible retinal eye injuries using a "total retina patch" consisting of retinal photoreceptor progenitor sheets and healthy RPE cells on an artificial Bruch's membrane (BM). For this, retina organoids (ROs) (cultured in suspension) and polarized RPE sheets (cultured on an ultrathin parylene substrate) were made into a co-graft using bio-adhesives [gelatin, growth factor-reduced matrigel, and medium viscosity (MVG) alginate]. In vivo transplantation experiments were conducted in immunodeficient Royal College of Surgeons (RCS) rats at advanced stages of retinal degeneration. Structural reconstruction of the severely damaged retina was observed based on histological assessments and optical coherence tomography (OCT) imaging. Visual functional assessments were conducted by optokinetic behavioral testing and superior colliculus electrophysiology. Long-term survival of the co-graft in the rat subretinal space and improvement in visual function were observed. Immunohistochemistry showed that co-grafts grew, generated new photoreceptors and developed neuronal processes that were integrated into the host retina. This novel approach can be considered as a new therapy for complete replacement of a degenerated retina.

15.
Sci Rep ; 11(1): 6286, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737600

RESUMO

Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw. Thawed cells exhibit ≥ 95% viability, have morphology, pigmentation, and gene expression characteristic of mature RPE cells, and secrete the neuroprotective protein, pigment epithelium-derived factor (PEDF). Stability under liquid nitrogen (LN2) storage has been confirmed through one year. REPS were administered immediately post-thaw into the subretinal space of a mammalian model, the Royal College of Surgeons (RCS)/nude rat. Implanted REPS were assessed at 30, 60, and 90 days post-implantation, and thawed cells demonstrate survival as an intact monolayer on the parylene scaffold. Furthermore, immunoreactivity for the maturation marker, RPE65, significantly increased over the post-implantation period in vivo, and cells demonstrated functional attributes similar to non-cryopreserved controls. The capacity to cryopreserve adherent cellular therapeutics permits extended storage and stable transport to surgical sites, enabling broad distribution for the treatment of prevalent diseases such as AMD.


Assuntos
Criopreservação/métodos , Células Epiteliais/transplante , Degeneração Macular/terapia , Epitélio Pigmentado da Retina/transplante , Manejo de Espécimes/métodos , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Fatores de Crescimento Neural/metabolismo , Polímeros , Ratos , Ratos Nus , Medicina Regenerativa/métodos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Serpinas/metabolismo , Alicerces Teciduais , Resultado do Tratamento , Xilenos
16.
Appl Sci (Basel) ; 11(5)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35251703

RESUMO

The retina is a complex and fragile photosensitive part of the central nervous system which is prone to degenerative diseases leading to permanent vision loss. No proven treatment strategies exist to treat or reverse the degenerative conditions. Recent investigations demonstrate that cell transplantation therapies to replace the dysfunctional retinal pigment epithelial (RPE) cells and or the degenerating photoreceptors (PRs) are viable options to restore vision. Pluripotent stem cells, retinal progenitor cells, and somatic stem cells are the main cell sources used for cell transplantation therapies. The success of retinal transplantation based on cell suspension injection is hindered by limited cell survival and lack of cellular integration. Recent advances in material science helped to develop strategies to grow cells as intact monolayers or as sheets on biomaterial scaffolds for transplantation into the eyes. Such implants are found to be more promising than the bolus injection approach. Tissue engineering techniques are specifically designed to construct biodegradable or non-degradable polymer scaffolds to grow cells as a monolayer and construct implantable grafts. The engineered cell construct along with the extracellular matrix formed, can hold the cells in place to enable easy survival, better integration, and improved visual function. This article reviews the advances in the use of scaffolds for transplantation studies in animal models and their application in current clinical trials.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32746196

RESUMO

Currently, blindness cannot be cured and patients' living quality can be compromised severely. Ultrasonic (US) neuromodulation is a promising technology for the development of noninvasive cortical visual prosthesis. We investigated the feasibility of transcranial focused ultrasound (tFUS) for noninvasive stimulation of the visual cortex (VC) to develop improved visual prosthesis. tFUS was used to successfully evoke neural activities in the VC of both normal and retinal degenerate (RD) blind rats. Our results showed that blind rats showed more robust responses to ultrasound stimulation when compared with normal rats. ( , two-sample t-test). Three different types of ultrasound waveforms were used in the three experimental groups. Different types of cortical activities were observed when different US waveforms were used. In all rats, when stimulated with continuous ultrasound waves, only short-duration responses were observed at "US on and off" time points. In comparison, pulsed waves (PWs) evoked longer low-frequency responses. Testing different parameters of PWs showed that a pulse repetition frequency higher than 100 Hz is required to obtain the low-frequency responses. Based on the observed cortical activities, we inferred that acoustic radiation force (ARF) is the predominant physical mechanism of ultrasound neuromodulation.


Assuntos
Córtex Visual , Animais , Humanos , Ratos , Ondas Ultrassônicas , Ultrassonografia , Córtex Visual/diagnóstico por imagem
18.
Invest Ophthalmol Vis Sci ; 61(11): 34, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32945842

RESUMO

Purpose: To study if human embryonic stem cell-derived photoreceptors could survive and function without the support of retinal pigment epithelium (RPE) after transplantation into Royal College of Surgeons rats, a rat model of retinal degeneration caused by RPE dysfunction. Methods: CSC14 human embryonic stem cells were differentiated into primordial eye structures called retinal organoids. Retinal organoids were analyzed by quantitative PCR and immunofluorescence and compared with human fetal retina. Retinal organoid sheets (30-70 day of differentiation) were transplanted into immunodeficient RCS rats, aged 44 to 56 days. The development of transplant organoids in vivo in relation to the host was examined by optical coherence tomography. Visual function was assessed by optokinetic testing, electroretinogram, and superior colliculus electrophysiologic recording. Cryostat sections were analyzed for various retinal, synaptic, and donor markers. Results: Retinal organoids showed similar gene expression to human fetal retina transplanted rats demonstrated significant improvement in visual function compared with RCS nonsurgery and sham surgery controls by ERGs at 2 months after surgery (but not later), optokinetic testing (up to 6 months after surgery) and electrophysiologic superior colliculus recordings (6-8 months after surgery). The transplanted organoids survived more than 7 months; developed photoreceptors with inner and outer segments, and other retinal cells; and were well-integrated within the host. Conclusions: This study, to our knowledge, is the first to show that transplanted photoreceptors survive and function even with host's dysfunctional RPE. Our findings suggest that transplantation of organoid sheets from stem cells may be a promising approach/therapeutic for blinding diseases.


Assuntos
Células Fotorreceptoras/metabolismo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Organoides/metabolismo , Organoides/transplante , Células Fotorreceptoras/patologia , Ratos , Ratos Mutantes , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica
19.
Graefes Arch Clin Exp Ophthalmol ; 256(11): 2113-2125, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30215097

RESUMO

PURPOSE: To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats. METHODS: Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control. RESULTS: Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1-3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection. CONCLUSIONS: This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.


Assuntos
Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas/transplante , Síndromes de Imunodeficiência/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Distrofias Retinianas/terapia , Epitélio Pigmentado da Retina/transplante , Animais , Sobrevivência Celular , Eletrorretinografia , Feminino , Técnicas de Genotipagem , Sobrevivência de Enxerto/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Fenótipo , Ratos , Ratos Nus , Retina/fisiopatologia , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/fisiopatologia , Epitélio Pigmentado da Retina/fisiologia , Tomografia de Coerência Óptica , c-Mer Tirosina Quinase/genética
20.
Invest Ophthalmol Vis Sci ; 59(6): 2586-2603, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847666

RESUMO

Purpose: To investigate whether sheets of retina organoids derived from human embryonic stem cells (hESCs) can differentiate, integrate, and improve visual function in an immunodeficient rat model of severe retinal degeneration (RD). Methods: 3D hESC-derived retina organoids were analyzed by quantitative PCR and immunofluorescence. Sheets dissected from retina organoids (30-65 days of differentiation) were transplanted into the subretinal space of immunodeficient rho S334ter-3 rats. Visual function was tested by optokinetic testing and electrophysiologic recording in the superior colliculus. Transplants were analyzed at 54 to 300 days postsurgery by immunohistochemistry for donor and retinal markers. Results: Retina organoids contained multiple retinal cell types, including progenitor populations capable of developing new cones and rods. After transplantation into an immunodeficient rat model of severe RD, the transplanted sheets differentiated, integrated, and produced functional photoreceptors and other retinal cells, according to the longer human developmental timetable. Maturation of the transplanted retinal cells created visual improvements that were measured by optokinetic testing and electrophysiologic recording in the superior colliculus. Immunohistochemistry analysis indicated that the donor cells were synaptically active. Extensive transplant projections could be seen within the host RD retina. Optical coherence tomography imaging monitored long-term transplant growth and survival up to 10 months postsurgery. Conclusions: These data demonstrate that the transplantation of sheets dissected from hESC-derived retina organoids is a potential therapeutic method for restoring vision in advanced stages of RD.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Organoides/citologia , Retina/citologia , Degeneração Retiniana/terapia , Transplante de Células-Tronco , Acuidade Visual/fisiologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Eletrofisiologia , Humanos , Microscopia de Fluorescência , Nistagmo Optocinético/fisiologia , Organoides/metabolismo , Ratos , Ratos Nus , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/fisiopatologia , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...